Deterministic Global Optimization : An Introduction to the Diagonal Approach / Yaroslav D. Sergeyev, Dmitri E. Kvasov
| Deterministic Global Optimization : An Introduction to the Diagonal Approach / Yaroslav D. Sergeyev, Dmitri E. Kvasov |
| Autore | Sergeyev, Yaroslav D. |
| Pubbl/distr/stampa | New York, : Springer, 2017 |
| Descrizione fisica | x, 136 p. : ill. ; 24 cm |
| Altri autori (Persone) | Kvasov, Dmitri E. |
| Soggetto topico |
93B30 - System identification [MSC 2020]
94A12 - Signal theory (characterization, reconstruction, filtering, etc.) [MSC 2020] 90C26 - Nonconvex programming, global optimization [MSC 2020] 65K05 - Numerical mathematical programming methods [MSC 2020] |
| Soggetto non controllato |
Derivative-free methods
Deterministic global optimization Diagonal approach Efficient diagonal partitions Lipschitz condition Lipschitz global optimization Methods using the first Lipschitz derivatives Multiextremal problems Non-smooth and smooth minorants One-dimensional algorithms |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0123939 |
Sergeyev, Yaroslav D.
|
||
| New York, : Springer, 2017 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Deterministic Global Optimization : An Introduction to the Diagonal Approach / Yaroslav D. Sergeyev, Dmitri E. Kvasov
| Deterministic Global Optimization : An Introduction to the Diagonal Approach / Yaroslav D. Sergeyev, Dmitri E. Kvasov |
| Autore | Sergeyev, Yaroslav D. |
| Pubbl/distr/stampa | New York, : Springer, 2017 |
| Descrizione fisica | x, 136 p. : ill. ; 24 cm |
| Altri autori (Persone) | Kvasov, Dmitri E. |
| Soggetto topico |
65K05 - Numerical mathematical programming methods [MSC 2020]
90C26 - Nonconvex programming, global optimization [MSC 2020] 93B30 - System identification [MSC 2020] 94A12 - Signal theory (characterization, reconstruction, filtering, etc.) [MSC 2020] |
| Soggetto non controllato |
Derivative-free methods
Deterministic global optimization Diagonal approach Efficient diagonal partitions Lipschitz condition Lipschitz global optimization Methods using the first Lipschitz derivatives Multiextremal problems Non-smooth and smooth minorants One-dimensional algorithms |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00123939 |
Sergeyev, Yaroslav D.
|
||
| New York, : Springer, 2017 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Iterative Methods for Solving Nonlinear Equations and Systems
| Iterative Methods for Solving Nonlinear Equations and Systems |
| Autore | Soleymani Fazlollah |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 online resource (494 p.) |
| Soggetto non controllato |
?-continuity condition
accretive operators asymptotic error constant attractor basin banach space Banach space basin of attraction basins of attraction Chebyshev-Halley-type computational efficiency computational efficiency index computational order of convergence conjugate gradient method convex constraints convexity divided difference operator drazin inverse dynamics efficiency index engineering applications error bound finite difference (FD) fixed point theorem fourth order iterative methods Fréchet derivative Fredholm integral equation Frédholm integral equation generalized inverse global convergence heston model high order higher order higher order method higher order of convergence Hilbert space Hull-White integral equation intersection iteration scheme iterative method iterative methods iterative process Jarratt method Kantorovich hypothesis King's family Kung-Traub conjecture least square problem Lipschitz condition local convergence Moore-Penrose multi-valued quasi-nonexpasive mappings multiple roots multiple zeros multiple-root finder multipoint iterations multipoint iterative methods n-dimensional Euclidean space Newton method Newton-HSS method Newton-like method Newton-type methods Newton's iterative method Newton's method Newton's second order method non-differentiable operator non-linear equation nonlinear equation nonlinear equations nonlinear HSS-like method nonlinear models nonlinear monotone equations nonlinear operator equation nonlinear systems numerical experiment optimal iterative methods optimal methods optimal order option pricing order of convergence Padé approximation parametric curve PDE Picard-HSS method planar algebraic curve point projection Potra-Pták method projection method purely imaginary extraneous fixed point R-order radius of convergence rate of convergence rectangular matrices semi-local convergence semilocal convergence signal and image processing signal processing sixteenth order convergence method sixteenth-order optimal convergence smooth and nonsmooth operators split variational inclusion problem Steffensen's method system of nonlinear equations systems of nonlinear equations the improved curvature circle algorithm variational inequality problem weight function with memory |
| ISBN | 3-03921-941-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910367739103321 |
Soleymani Fazlollah
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Symmetry with Operator Theory and Equations / Ioannis Argyros
| Symmetry with Operator Theory and Equations / Ioannis Argyros |
| Autore | Argyros Ioannis K |
| Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
| Descrizione fisica | 1 electronic resource (208 p.) |
| Soggetto non controllato |
Lipschitz condition
order of convergence Scalar equations local and semilocal convergence multiple roots Nondifferentiable operator optimal iterative methods Order of convergence convergence order fast algorithms iterative method computational convergence order generalized mixed equilibrium problem nonlinear equations systems of nonlinear equations Chebyshev’s iterative method local convergence iterative methods divided difference Multiple roots semi-local convergence scalar equations left Bregman asymptotically nonexpansive mapping basin of attraction maximal monotone operator Newton–HSS method general means Steffensen’s method derivative-free method simple roots fixed point problem split variational inclusion problem weighted-Newton method ball radius of convergence Traub–Steffensen method Newton’s method fractional derivative Banach space multiple-root solvers uniformly convex and uniformly smooth Banach space Fréchet-derivative optimal convergence Optimal iterative methods basins of attraction nonlinear equation |
| ISBN |
9783039216673
3039216678 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910367751703321 |
Argyros Ioannis K
|
||
| MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||