Anisotropy Across Fields and Scales [[electronic resource] /] / edited by Evren Özarslan, Thomas Schultz, Eugene Zhang, Andrea Fuster |
Autore | Özarslan Evren |
Edizione | [1st ed. 2021.] |
Pubbl/distr/stampa | Springer Nature, 2021 |
Descrizione fisica | 1 online resource (X, 280 p. 109 illus., 91 illus. in color.) |
Disciplina | 004 |
Collana | Mathematics and Visualization |
Soggetto topico |
Mathematics
Visualization Matrix theory Algebra Computer mathematics Optical data processing Mathematical physics Linear and Multilinear Algebras, Matrix Theory Computational Science and Engineering Computer Imaging, Vision, Pattern Recognition and Graphics Theoretical, Mathematical and Computational Physics |
Soggetto non controllato |
Visualization
Linear and Multilinear Algebras, Matrix Theory Computational Science and Engineering Computer Imaging, Vision, Pattern Recognition and Graphics Theoretical, Mathematical and Computational Physics Data and Information Visualization Linear Algebra tensor tensor fields higher-order harmonics spherical harmonics image processing medical imaging diffusion-weighted imaging (DWI) structural mechanics astrophysics statistics open access Combinatorics & graph theory Algebra Maths for scientists Computer vision Mathematical physics |
ISBN | 3-030-56215-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Tensor approximation for multidimensional and multivariate data -- Tensor field topology without symmetrization using Hermitian tensors -- Continuous histograms for Anisotropy of 2D symmetric piece-wise linear tensor fields -- Riemann-DTI geodesic tractography revisited -- Fourth-order anisotropic diffusion for inpainting and image compression -- Advanced deep learning for processing orientation-dependent diffusion magnetic resonance imaging data - A review -- On the variance measure of diffusion tensors in two dimensions -- Magnetic resonance assessment of effective confinement anisotropy with powder-averaged single and double diffusion encoding -- Merge trees, neutral surfaces, and tensor field topology -- Asymmetric tensor analysis -- Anisotropy issues in shape-based object analysis -- Tractogram filtering -- Multispectral image processing in astronomy -- Anisotropy in the human placenta in pregnancies complicated by fetal growth restriction -- The case for spatially homogeneous models in high gradient strength diffusion-weighted MRI: A position paper on the potential applicability of stochastic geometry. |
Record Nr. | UNISA-996466563203316 |
Özarslan Evren
![]() |
||
Springer Nature, 2021 | ||
![]() | ||
Lo trovi qui: Univ. di Salerno | ||
|
Robust algebraic multilevel methods and algorithms [[electronic resource] /] / Johannes Kraus, Svetozar Margenov |
Autore | Kraus Johannes |
Pubbl/distr/stampa | Berlin ; ; New York, : Walter De Gruyter, c2009 |
Descrizione fisica | 1 online resource (256 p.) |
Disciplina | 515.35 |
Altri autori (Persone) | MargenovSvetozar |
Collana | Radon series on computational and applied mathematics |
Soggetto topico |
Algebras, Linear - Data processing
Mathematical analysis |
Soggetto non controllato |
Linear Algebra
Multigrid Method Partial Differential Equation |
ISBN |
1-282-37263-7
9786612372636 3-11-021483-0 |
Classificazione | SK 540 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- 1. Introduction -- 2. Algebraic multilevel iteration methods -- 3. Robust AMLI algorithms: Conforming linear finite elements -- 4. Robust AMLI algorithms: Nonconforming linear finite elements -- 5. Schur complement based multilevel preconditioners -- 6. Algebraic multigrid (AMG) -- 7. Preconditioning of Rannacher-Turek nonconforming FE systems -- 8. AMLI algorithms for discontinuous Galerkin FE problems -- 9. AMLI methods for coupled problems -- 10. Practical issues -- Backmatter |
Record Nr. | UNINA-9910778468003321 |
Kraus Johannes
![]() |
||
Berlin ; ; New York, : Walter De Gruyter, c2009 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|