Geometry of manifolds with non-negative sectional curvature / Owen Dearricott ... [et al.] ; editors: Rafael Herrera, Luis Hernández-Lamoneda |
Pubbl/distr/stampa | Cham, : Springer, 2014 |
Descrizione fisica | VII, 196 p. ; 24 cm |
Soggetto topico |
22Exx - Lie groups [MSC 2020]
57S25 - Groups acting on specific manifolds [MSC 2020] 58A15 - Exterior differential systems (Cartan theory) [MSC 2020] 53C21 - Methods of global Riemannian geometry, including PDE methods; curvature restrictions [MSC 2020] 53C23 - Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces [MSC 2020] 53Cxx - Global differential geometry [MSC 2020] 58A20 - Jets in global analysis [MSC 2020] 22Fxx - Noncompact transformation groups [MSC 2020] |
Soggetto non controllato |
Cohomogeneity one action
Lie group action Non-negative sectional curvature Riemannian manifolds n-Sasakian manifolds |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0101543 |
Cham, : Springer, 2014 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Lie Groups / Luiz A. B. San Martin ; Translated from the Portuguese by José Emílio Maiorino and Carlos Augusto Bassani Varea |
Autore | San Martin, Luiz A. B. |
Pubbl/distr/stampa | Cham, : Springer, 2021 |
Descrizione fisica | xiv, 371 p. : ill. ; 24 cm |
Soggetto topico |
22-XX - Topological groups, Lie groups [MSC 2020]
17B30 - Solvable, nilpotent (super)algebras [MSC 2020] 22E46 - Semisimple Lie groups and their representations [MSC 2020] 22E45 - Representations of Lie and linear algebraic groups over real fields: analytic methods [MSC 2020] 22E25 - Nilpotent and solvable Lie groups [MSC 2020] 17B05 - Structure theory for Lie algebras and superalgebras [MSC 2020] 17B20 - Simple, semisimple, reductive (super)algebras [MSC 2020] 22E60 - Lie algebras of Lie groups [MSC 2020] 22Cxx - Compact groups [MSC 2020] 17B22 - Root systems [MSC 2020] |
Soggetto non controllato |
Compact groups
Enveloping algebras Haar measure Homomorphism Lie Algebras Lie group action Lie groups Nilpotent Topological groups |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0274881 |
San Martin, Luiz A. B.
![]() |
||
Cham, : Springer, 2021 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Unitary Representations of Reductive Lie Groups. (AM-118), Volume 118 / / David A. Vogan |
Autore | Vogan David A. |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (320 pages) |
Disciplina | 512/.55 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Lie groups
Representations of Lie groups |
Soggetto non controllato |
Abelian group
Adjoint representation Annihilator (ring theory) Atiyah–Singer index theorem Automorphic form Automorphism Cartan subgroup Circle group Class function (algebra) Classification theorem Cohomology Commutator subgroup Complete metric space Complex manifold Conjugacy class Cotangent space Dimension (vector space) Discrete series representation Dixmier conjecture Dolbeault cohomology Duality (mathematics) Eigenvalues and eigenvectors Exponential map (Lie theory) Exponential map (Riemannian geometry) Exterior algebra Function space Group homomorphism Harmonic analysis Hecke algebra Hilbert space Hodge theory Holomorphic function Holomorphic vector bundle Homogeneous space Homomorphism Induced representation Infinitesimal character Inner automorphism Invariant subspace Irreducibility (mathematics) Irreducible representation Isometry group Isometry K-finite Kazhdan–Lusztig polynomial Langlands decomposition Lie algebra cohomology Lie algebra representation Lie algebra Lie group action Lie group Mathematical induction Maximal compact subgroup Measure (mathematics) Minkowski space Nilpotent group Orbit method Orthogonal group Parabolic induction Principal homogeneous space Principal series representation Projective space Pseudo-Riemannian manifold Pullback (category theory) Ramanujan–Petersson conjecture Reductive group Regularity theorem Representation of a Lie group Representation theorem Representation theory Riemann sphere Riemannian manifold Schwartz space Semisimple Lie algebra Sheaf (mathematics) Sign (mathematics) Special case Spectral theory Sub"ient Subgroup Support (mathematics) Symplectic geometry Symplectic group Symplectic vector space Tangent space Tautological bundle Theorem Topological group Topological space Trivial representation Unitary group Unitary matrix Unitary representation Universal enveloping algebra Vector bundle Weyl algebra Weyl character formula Weyl group Zariski's main theorem Zonal spherical function |
ISBN | 1-4008-8238-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- CONTENTS -- ACKNOWLEDGEMENTS -- INTRODUCTION -- Chapter 1. COMPACT GROUPS AND THE BOREL-WEIL THEOREM -- Chapter 2. HARISH-CHANDRA MODULES -- Chapter 3. PARABOLIC INDUCTION -- Chapter 4. STEIN COMPLEMENTARY SERIES AND THE UNITARY DUAL OF GL(n,ℂ) -- Chapter 5. COHOMOLOGICAL PARABOLIC INDUCTION: ANALYTIC THEORY -- Chapter 6. COHOMOLOGICAL PARABOLIC INDUCTION: ALGEBRAIC THEORY -- Interlude. THE IDEA OF UNIPOTENT REPRESENTATIONS -- Chapter 7. FINITE GROUPS AND UNIPOTENT REPRESENTATIONS -- Chapter 8. LANGLANDS' PRINCIPLE OF FUNCTORIALITY AND UNIPOTENT REPRESENTATIONS -- Chapter 9. PRIMITIVE IDEALS AND UNIPOTENT REPRESENTATIONS -- Chapter 10. THE ORBIT METHOD AND UNIPOTENT REPRESENTATIONS -- Chapter 11. E-MULTIPLICITIES AND UNIPOTENT REPRESENTATIONS -- Chapter 12. ON THE DEFINITION OF UNIPOTENT REPRESENTATIONS -- Chapter 13. EXHAUSTION -- REFERENCES -- Backmatter |
Record Nr. | UNINA-9910154742103321 |
Vogan David A.
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|