Quantum versus Classical Mechanics and Integrability Problems : towards a unification of approaches and tools / Maciej Błaszak |
Autore | Blaszak, Maciej |
Pubbl/distr/stampa | Cham, : Springer, 2019 |
Descrizione fisica | xiii, 460 p. : ill. ; 24 cm |
Soggetto topico |
81-XX - Quantum theory [MSC 2020]
37-XX - Dynamical systems and ergodic theory [MSC 2020] 70Hxx - Hamiltonian and Lagrangian mechanics [MSC 2020] 53D50 - Geometric quantization [MSC 2020] 37J35 - Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests [MSC 2020] 70H06 - Completely integrable systems and methods of integration for problems in Hamiltonian and Lagrangian mechanics [MSC 2020] 81S10 - Geometry and quantization, symplectic methods [MSC 2020] 53D55 - Deformation quantization, star products [MSC 2020] 81S08 - Canonical quantization [MSC 2020] 81Q80 - Special quantum systems, such as solvable systems [MSC 2020] |
Soggetto non controllato |
Bosonic systems
Classical integrable systems Deformation quantization Geometric deformation Hamilton-Jacobi Theory Integrable Systems Lie derivative Linear tensor algebra Liouville integrable systems Quantum Trajectory Quantum integrability Quantum integrable systems Riemannian spaces Separability theory Staeckel systems Symplectic manifolds Tensor fields |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0218332 |
Blaszak, Maciej | ||
Cham, : Springer, 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Quantum versus Classical Mechanics and Integrability Problems : towards a unification of approaches and tools / Maciej Błaszak |
Autore | Blaszak, Maciej |
Pubbl/distr/stampa | Cham, : Springer, 2019 |
Descrizione fisica | xiii, 460 p. : ill. ; 24 cm |
Soggetto topico |
37-XX - Dynamical systems and ergodic theory [MSC 2020]
37J35 - Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests [MSC 2020] 53D50 - Geometric quantization [MSC 2020] 53D55 - Deformation quantization, star products [MSC 2020] 70H06 - Completely integrable systems and methods of integration for problems in Hamiltonian and Lagrangian mechanics [MSC 2020] 70Hxx - Hamiltonian and Lagrangian mechanics [MSC 2020] 81-XX - Quantum theory [MSC 2020] 81Q80 - Special quantum systems, such as solvable systems [MSC 2020] 81S08 - Canonical quantization [MSC 2020] 81S10 - Geometry and quantization, symplectic methods [MSC 2020] |
Soggetto non controllato |
Bosonic systems
Classical integrable systems Deformation quantization Geometric deformation Hamilton-Jacobi Theory Integrable Systems Lie derivative Linear tensor algebra Liouville integrable systems Quantum Trajectory Quantum integrability Quantum integrable systems Riemannian spaces Separability theory Staeckel systems Symplectic manifolds Tensor fields |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00218332 |
Blaszak, Maciej | ||
Cham, : Springer, 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Radon transforms and the rigidity of the Grassmannians [[electronic resource] /] / Jacques Gasqui and Hubert Goldschmidt |
Autore | Gasqui Jacques |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, N.J., : Princeton University Press, 2004 |
Descrizione fisica | 1 online resource (385 p.) |
Disciplina | 515/.723 |
Altri autori (Persone) | GoldschmidtHubert <1942-> |
Collana | Annals of mathematics studies |
Soggetto topico |
Radon transforms
Grassmann manifolds |
Soggetto non controllato |
Adjoint
Automorphism Cartan decomposition Cartan subalgebra Casimir element Closed geodesic Cohomology Commutative property Complex manifold Complex number Complex projective plane Complex projective space Complex vector bundle Complexification Computation Constant curvature Coset Covering space Curvature Determinant Diagram (category theory) Diffeomorphism Differential form Differential geometry Differential operator Dimension (vector space) Dot product Eigenvalues and eigenvectors Einstein manifold Elliptic operator Endomorphism Equivalence class Even and odd functions Exactness Existential quantification G-module Geometry Grassmannian Harmonic analysis Hermitian symmetric space Hodge dual Homogeneous space Identity element Implicit function Injective function Integer Integral Isometry Killing form Killing vector field Lemma (mathematics) Lie algebra Lie derivative Line bundle Mathematical induction Morphism Open set Orthogonal complement Orthonormal basis Orthonormality Parity (mathematics) Partial differential equation Projection (linear algebra) Projective space Quadric Quaternionic projective space Quotient space (topology) Radon transform Real number Real projective plane Real projective space Real structure Remainder Restriction (mathematics) Riemann curvature tensor Riemann sphere Riemannian manifold Rigidity (mathematics) Scalar curvature Second fundamental form Simple Lie group Standard basis Stokes' theorem Subgroup Submanifold Symmetric space Tangent bundle Tangent space Tangent vector Tensor Theorem Topological group Torus Unit vector Unitary group Vector bundle Vector field Vector space X-ray transform Zero of a function |
ISBN |
1-282-15898-8
9786612158988 1-4008-2617-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- TABLE OF CONTENTS -- INTRODUCTION -- Chapter I. Symmetric Spaces and Einstein Manifolds -- Chapter II. Radon Transforms on Symmetric Spaces -- Chapter III. Symmetric Spaces of Rank One -- Chapter IV. The Real Grassmannians -- Chapter V. The Complex Quadric -- Chapter VI. The Rigidity of the Complex Quadric -- Chapter VII. The Rigidity of the Real Grassmannians -- Chapter VIII. The Complex Grassmannians -- Chapter IX. The Rigidity of the Complex Grassmannians -- Chapter X. Products of Symmetric Spaces -- References -- Index |
Record Nr. | UNINA-9910778216403321 |
Gasqui Jacques | ||
Princeton, N.J., : Princeton University Press, 2004 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|