top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Quantum Theory, Groups and Representations : an introduction / Peter Woit
Quantum Theory, Groups and Representations : an introduction / Peter Woit
Autore Woit, Peter
Pubbl/distr/stampa Cham, : Springer, 2017
Descrizione fisica xxii, 668 p. : ill. ; 24 cm
Soggetto topico 81-XX - Quantum theory [MSC 2020]
81Sxx - General quantum mechanics and problems of quantization [MSC 2020]
81Rxx - Groups and algebras in quantum theory [MSC 2020]
Soggetto non controllato Fermionic oscillator
Fourier analysis and free particle
Hamiltonian vector fields
Heisenberg group
Lie Algebras
Lie algebra representations
Lie groups
Metaplectic representation
Momentum and free particle
Poisson bracket and symplectic geometry
Quantization
Quantum Field Theory
Quantum free particle
Quantum mechanics
Representation Theory
Rotation and spin groups
Schroedinger representation
Standard Model of particle physics
Two-state systems
Unitary group representations
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0124057
Woit, Peter  
Cham, : Springer, 2017
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Quantum Theory, Groups and Representations : an introduction / Peter Woit
Quantum Theory, Groups and Representations : an introduction / Peter Woit
Autore Woit, Peter
Pubbl/distr/stampa Cham, : Springer, 2017
Descrizione fisica xxii, 668 p. : ill. ; 24 cm
Soggetto topico 81-XX - Quantum theory [MSC 2020]
81Rxx - Groups and algebras in quantum theory [MSC 2020]
81Sxx - General quantum mechanics and problems of quantization [MSC 2020]
Soggetto non controllato Fermionic oscillator
Fourier analysis and free particle
Hamiltonian vector fields
Heisenberg group
Lie Algebras
Lie algebra representations
Lie groups
Metaplectic representation
Momentum and free particle
Poisson bracket and symplectic geometry
Quantization
Quantum Field Theory
Quantum free particle
Quantum mechanics
Representation Theory
Rotation and spin groups
Schroedinger representation
Standard Model of particle physics
Two-state systems
Unitary group representations
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00124057
Woit, Peter  
Cham, : Springer, 2017
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Representations and Nilpotent Orbits of Lie Algebraic Systems : In Honour of the 75th Birthday of Tony Joseph / Maria Gorelik, Vladimir Hinich, Anna Melnikov editors
Representations and Nilpotent Orbits of Lie Algebraic Systems : In Honour of the 75th Birthday of Tony Joseph / Maria Gorelik, Vladimir Hinich, Anna Melnikov editors
Pubbl/distr/stampa Cham, : Birkhäuser, 2019
Descrizione fisica xvii, 553 p. : ill. ; 24 cm
Soggetto topico 22-XX - Topological groups, Lie groups [MSC 2020]
22Exx - Lie groups [MSC 2020]
Soggetto non controllato Anthony Joseph Weizmann Institute
Anthony Joseph mathematics
Invariant theory
Lie Theory
Lie algebra
Lie algebra representations
Nilpotent Lie group
Nilpotent groups
Nilpotent orbits
Primitive ideals
Quantum algebra
Representation Theory
Yangians
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0127145
Cham, : Birkhäuser, 2019
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Representations and Nilpotent Orbits of Lie Algebraic Systems : In Honour of the 75th Birthday of Tony Joseph / Maria Gorelik, Vladimir Hinich, Anna Melnikov editors
Representations and Nilpotent Orbits of Lie Algebraic Systems : In Honour of the 75th Birthday of Tony Joseph / Maria Gorelik, Vladimir Hinich, Anna Melnikov editors
Pubbl/distr/stampa Cham, : Birkhäuser, 2019
Descrizione fisica xvii, 553 p. : ill. ; 24 cm
Soggetto topico 22-XX - Topological groups, Lie groups [MSC 2020]
22Exx - Lie groups [MSC 2020]
Soggetto non controllato Anthony Joseph Weizmann Institute
Anthony Joseph mathematics
Invariant theory
Lie Theory
Lie algebra
Lie algebra representations
Nilpotent Lie group
Nilpotent groups
Nilpotent orbits
Primitive ideals
Quantum algebra
Representation Theory
Yangians
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00127145
Cham, : Birkhäuser, 2019
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui