Mumford-Tate groups and domains [[electronic resource] ] : their geometry and arithmetic / / Mark Green, Phillip Griffiths, Matt Kerr |
Autore | Green M (Mark) |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, : Princeton University Press, 2012 |
Descrizione fisica | 1 online resource (298 p.) |
Disciplina | 516.35 |
Altri autori (Persone) |
GriffithsPhillip <1938->
KerrMatthew D. <1975-> |
Collana | Annals of mathematics studies |
Soggetto topico |
Mumford-Tate groups
Geometry, Algebraic |
Soggetto non controllato |
Deligne torus integer
Galois group Grothendieck conjecture Hodge decomposition Hodge domain Hodge filtration Hodge orientation Hodge representation Hodge structure Hodge tensor Hodge theory Kubota rank Lie algebra representation Lie group Mumford-Tate domain Mumford-Tate group Mumford-Tate subdomain Noether-Lefschetz locus Vogan diagram method Weyl group abelian variety absolute Hodge class algebraic geometry arithmetic group automorphic cohomology classical group compact dual complex manifold complex multiplication Hodge structure complex multiplication endomorphism algebra exceptional group holomorphic mapping homogeneous complex manifold homomorphism mixed Hodge structure moduli space monodromy group natural symmetry group oriented imaginary number fields period domain period map polarization polarized Hodge structure pure Hodge structure reflex field semisimple Lie algebra semisimple Lie group Γ-equivalence classes |
ISBN |
1-280-49465-4
9786613589880 1-4008-4273-5 |
Classificazione | SI 830 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Introduction -- Chapter I. Mumford-Tate Groups -- Chapter II. Period Domains and Mumford-Tate Domains -- Chapter III. The Mumford-Tate Group of a Variation of Hodge Structure -- Chapter IV. Hodge Representations and Hodge Domains -- Chapter V. Hodge Structures With Complex Multiplication -- Chapter VI. Arithmetic Aspects of Mumford-Tate Domains -- Chapter VII. Classification of Mumford-Tate Subdomains -- Chapter VIII. Arithmetic of Period Maps of Geometric Origin -- Index |
Record Nr. | UNINA-9910778922503321 |
Green M (Mark)
![]() |
||
Princeton, : Princeton University Press, 2012 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Unitary Representations of Reductive Lie Groups. (AM-118), Volume 118 / / David A. Vogan |
Autore | Vogan David A. |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (320 pages) |
Disciplina | 512/.55 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Lie groups
Representations of Lie groups |
Soggetto non controllato |
Abelian group
Adjoint representation Annihilator (ring theory) Atiyah–Singer index theorem Automorphic form Automorphism Cartan subgroup Circle group Class function (algebra) Classification theorem Cohomology Commutator subgroup Complete metric space Complex manifold Conjugacy class Cotangent space Dimension (vector space) Discrete series representation Dixmier conjecture Dolbeault cohomology Duality (mathematics) Eigenvalues and eigenvectors Exponential map (Lie theory) Exponential map (Riemannian geometry) Exterior algebra Function space Group homomorphism Harmonic analysis Hecke algebra Hilbert space Hodge theory Holomorphic function Holomorphic vector bundle Homogeneous space Homomorphism Induced representation Infinitesimal character Inner automorphism Invariant subspace Irreducibility (mathematics) Irreducible representation Isometry group Isometry K-finite Kazhdan–Lusztig polynomial Langlands decomposition Lie algebra cohomology Lie algebra representation Lie algebra Lie group action Lie group Mathematical induction Maximal compact subgroup Measure (mathematics) Minkowski space Nilpotent group Orbit method Orthogonal group Parabolic induction Principal homogeneous space Principal series representation Projective space Pseudo-Riemannian manifold Pullback (category theory) Ramanujan–Petersson conjecture Reductive group Regularity theorem Representation of a Lie group Representation theorem Representation theory Riemann sphere Riemannian manifold Schwartz space Semisimple Lie algebra Sheaf (mathematics) Sign (mathematics) Special case Spectral theory Sub"ient Subgroup Support (mathematics) Symplectic geometry Symplectic group Symplectic vector space Tangent space Tautological bundle Theorem Topological group Topological space Trivial representation Unitary group Unitary matrix Unitary representation Universal enveloping algebra Vector bundle Weyl algebra Weyl character formula Weyl group Zariski's main theorem Zonal spherical function |
ISBN | 1-4008-8238-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- CONTENTS -- ACKNOWLEDGEMENTS -- INTRODUCTION -- Chapter 1. COMPACT GROUPS AND THE BOREL-WEIL THEOREM -- Chapter 2. HARISH-CHANDRA MODULES -- Chapter 3. PARABOLIC INDUCTION -- Chapter 4. STEIN COMPLEMENTARY SERIES AND THE UNITARY DUAL OF GL(n,ℂ) -- Chapter 5. COHOMOLOGICAL PARABOLIC INDUCTION: ANALYTIC THEORY -- Chapter 6. COHOMOLOGICAL PARABOLIC INDUCTION: ALGEBRAIC THEORY -- Interlude. THE IDEA OF UNIPOTENT REPRESENTATIONS -- Chapter 7. FINITE GROUPS AND UNIPOTENT REPRESENTATIONS -- Chapter 8. LANGLANDS' PRINCIPLE OF FUNCTORIALITY AND UNIPOTENT REPRESENTATIONS -- Chapter 9. PRIMITIVE IDEALS AND UNIPOTENT REPRESENTATIONS -- Chapter 10. THE ORBIT METHOD AND UNIPOTENT REPRESENTATIONS -- Chapter 11. E-MULTIPLICITIES AND UNIPOTENT REPRESENTATIONS -- Chapter 12. ON THE DEFINITION OF UNIPOTENT REPRESENTATIONS -- Chapter 13. EXHAUSTION -- REFERENCES -- Backmatter |
Record Nr. | UNINA-9910154742103321 |
Vogan David A.
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|