Classical and Quantum Dynamics : from Classical Paths to Path Integrals / Walter Dittrich, Martin Reuter |
Autore | Dittrich, Walter |
Edizione | [6. ed] |
Pubbl/distr/stampa | Cham, : Springer, 2020 |
Descrizione fisica | x, 563 p. ; 24 cm |
Altri autori (Persone) | Reuter, Martin |
Soggetto topico |
81-XX - Quantum theory [MSC 2020]
70H05 - Hamilton's equations [MSC 2020] 81Q20 - Semiclassical techniques including WKB and Maslov methods applied to problems in quantum theory [MSC 2020] 70-XX - Mechanics of particles and systems [MSC 2020] 83C05 - Einstein's equations (general structure, canonical formalism, Cauchy problems) [MSC 2020] 78A25 - Electromagnetic theory, general [MSC 2020] 00A79 (77-XX) - Physics [MSC 2020] 70Sxx - Classical field theories [MSC 2020] 81S40 - Path integrals in quantum mechanics [MSC 2020] 81V10 - Electromagnetic interaction; quantum electrodynamics [MSC 2020] 81Q70 - Differential geometric methods, including holonomy, Berry and Hannay phases, Aharonov-Bohm effect, etc. in quantum theory [MSC 2020] |
Soggetto non controllato |
Action Angle Variable
Adiabatic Invariance Physics Berry's Phase Canonical Perturbation Theory Hamilton-Jacobi Equation Introduction to Classical and Quantum Field Theory Lie Brackets Path Integral Physics Schwinger Action Principle Textbook Classical Dynamics Textbook Quantum Dynamics Textbook Quantum Mechanics Topology Quantum Mechanics |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0226164 |
Dittrich, Walter
![]() |
||
Cham, : Springer, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Classical and Quantum Dynamics : from Classical Paths to Path Integrals / Walter Dittrich, Martin Reuter |
Autore | Dittrich, Walter |
Edizione | [6. ed] |
Pubbl/distr/stampa | Cham, : Springer, 2020 |
Descrizione fisica | x, 563 p. ; 24 cm |
Altri autori (Persone) | Reuter, Martin |
Soggetto topico |
00A79 (77-XX) - Physics [MSC 2020]
70-XX - Mechanics of particles and systems [MSC 2020] 70H05 - Hamilton's equations [MSC 2020] 70Sxx - Classical field theories [MSC 2020] 78A25 - Electromagnetic theory, general [MSC 2020] 81-XX - Quantum theory [MSC 2020] 81Q20 - Semiclassical techniques including WKB and Maslov methods applied to problems in quantum theory [MSC 2020] 81Q70 - Differential geometric methods, including holonomy, Berry and Hannay phases, Aharonov-Bohm effect, etc. in quantum theory [MSC 2020] 81S40 - Path integrals in quantum mechanics [MSC 2020] 81V10 - Electromagnetic interaction; quantum electrodynamics [MSC 2020] 83C05 - Einstein's equations (general structure, canonical formalism, Cauchy problems) [MSC 2020] |
Soggetto non controllato |
Action Angle Variable
Adiabatic Invariance Physics Berry's Phase Canonical Perturbation Theory Classical Dynamics Hamilton-Jacobi Equation Introduction to Classical and Quantum Field Theory Lie Brackets Path Integral Physics Quantum Dynamics Quantum mechanics Schwinger Action Principle Topology Quantum Mechanics |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00226164 |
Dittrich, Walter
![]() |
||
Cham, : Springer, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Classical and Quantum Dynamics : from Classical Paths to Path Integrals / Walter Dittrich, Martin Reuter |
Autore | Dittrich, Walter |
Edizione | [5. ed] |
Pubbl/distr/stampa | Cham, : Springer, 2017 |
Descrizione fisica | xvi, 489 p. ; 24 cm |
Altri autori (Persone) | Reuter, Martin |
Soggetto topico |
81-XX - Quantum theory [MSC 2020]
70-XX - Mechanics of particles and systems [MSC 2020] 78-XX - Optics, electromagnetic theory [MSC 2020] |
Soggetto non controllato |
Action Angle Variable
Adiabatic Invariance Physics Berry's Phase Canonical Perturbation Theory Hamilton-Jacobi Equation Introduction to Classical and Quantum Field Theory Lie Brackets Path Integral Physics Schwinger Action Principle Textbook Classical Dynamics Textbook Quantum Dynamics Textbook Quantum Mechanics Topology Quantum Mechanics |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0183311 |
Dittrich, Walter
![]() |
||
Cham, : Springer, 2017 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Classical and Quantum Dynamics : from Classical Paths to Path Integrals / Walter Dittrich, Martin Reuter |
Autore | Dittrich, Walter |
Edizione | [5. ed] |
Pubbl/distr/stampa | Cham, : Springer, 2017 |
Descrizione fisica | xvi, 489 p. ; 24 cm |
Altri autori (Persone) | Reuter, Martin |
Soggetto topico |
70-XX - Mechanics of particles and systems [MSC 2020]
78-XX - Optics, electromagnetic theory [MSC 2020] 81-XX - Quantum theory [MSC 2020] |
Soggetto non controllato |
Action Angle Variable
Adiabatic Invariance Physics Berry's Phase Canonical Perturbation Theory Classical Dynamics Hamilton-Jacobi Equation Introduction to Classical and Quantum Field Theory Lie Brackets Path Integral Physics Quantum Dynamics Quantum mechanics Schwinger Action Principle Topology Quantum Mechanics |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00183311 |
Dittrich, Walter
![]() |
||
Cham, : Springer, 2017 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Differential Geometry and Lie Groups : A Computational Perspective / Jean Gallier, Jocelyn Quaintance |
Autore | Gallier, Jean |
Pubbl/distr/stampa | Cham, : Springer, 2020 |
Descrizione fisica | xv, 777 p. : ill. ; 24 cm |
Altri autori (Persone) | Quaintance, Jocelyn |
Soggetto topico |
53-XX - Differential geometry [MSC 2020]
22-XX - Topological groups, Lie groups [MSC 2020] |
Soggetto non controllato |
Adjoint representation
Connections on real manifolds Differential geometry Grassmannian manifold Homogeneous spaces Lie Brackets Lie algebras for computing Linear lie groups Lorentz groups Matrix Lie groups Matrix exponential Riemannian manifold Riemannian manifold curvature Stiefel manifold Theory of manifold optimization techniques |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0249001 |
Gallier, Jean
![]() |
||
Cham, : Springer, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Differential Geometry and Lie Groups : A Computational Perspective / Jean Gallier, Jocelyn Quaintance |
Autore | Gallier, Jean |
Pubbl/distr/stampa | Cham, : Springer, 2020 |
Descrizione fisica | xv, 777 p. : ill. ; 24 cm |
Altri autori (Persone) | Quaintance, Jocelyn |
Soggetto topico |
22-XX - Topological groups, Lie groups [MSC 2020]
53-XX - Differential geometry [MSC 2020] |
Soggetto non controllato |
Adjoint representation
Connections on real manifolds Differential geometry Grassmannian manifold Homogeneous spaces Lie Algebras Lie Brackets Linear lie groups Lorentz groups Matrix Lie groups Matrix exponential Riemannian manifold Riemannian manifold curvature Stiefel manifold Theory of manifold optimization techniques |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00249001 |
Gallier, Jean
![]() |
||
Cham, : Springer, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|