top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
4: Lie Algebras, Chevalley Groups, and Their Representations / Ramji Lal
4: Lie Algebras, Chevalley Groups, and Their Representations / Ramji Lal
Autore Lal, Ramji
Pubbl/distr/stampa Singapore, : Springer, 2021
Descrizione fisica xiv, 321 p. : ill. ; 24 cm
Soggetto topico 20-XX - Group theory and generalizations [MSC 2020]
16-XX - Associative rings and algebras [MSC 2020]
17-XX - Nonassociative rings and algebras [MSC 2020]
00-XX - General and overarching topics; collections [MSC 2020]
Soggetto non controllato Algebra
Chevalley Groups
Lie Algebras
Representation Theory
Root systems
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0275420
Lal, Ramji  
Singapore, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
4: Lie Algebras, Chevalley Groups, and Their Representations / Ramji Lal
4: Lie Algebras, Chevalley Groups, and Their Representations / Ramji Lal
Autore Lal, Ramji
Pubbl/distr/stampa Singapore, : Springer, 2021
Descrizione fisica xiv, 321 p. : ill. ; 24 cm
Soggetto topico 00-XX - General and overarching topics; collections [MSC 2020]
16-XX - Associative rings and algebras [MSC 2020]
17-XX - Nonassociative rings and algebras [MSC 2020]
20-XX - Group theory and generalizations [MSC 2020]
Soggetto non controllato Algebra
Chevalley Groups
Lie Algebras
Representation Theory
Root systems
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00275420
Lal, Ramji  
Singapore, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Classical Banach-Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space / Pierre de la Harpe
Classical Banach-Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space / Pierre de la Harpe
Autore Harpe, Pierre de la
Pubbl/distr/stampa Berlin, : Springer, 1972
Descrizione fisica 160 p. ; 24 cm
Soggetto topico 22-XX - Topological groups, Lie groups [MSC 2020]
46Lxx - Selfadjoint operator algebras ($C^*$-algebras, von Neumann ($W^*$-) algebras, etc.) [MSC 2020]
22E65 - Infinite-dimensional Lie groups and their Lie algebras: general properties [MSC 2020]
17B65 - Infinite-dimensional Lie (super)algebras [MSC 2020]
Soggetto non controllato Algebra
Banach algebra
Banach groups
Cohomology
Homology
Lie Algebras
Operators
Operators in Hilbert Space
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0255485
Harpe, Pierre de la  
Berlin, : Springer, 1972
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Classical Banach-Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space / Pierre de la Harpe
Classical Banach-Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space / Pierre de la Harpe
Autore Harpe, Pierre de la
Pubbl/distr/stampa Berlin, : Springer, 1972
Descrizione fisica 160 p. ; 24 cm
Soggetto topico 17B65 - Infinite-dimensional Lie (super)algebras [MSC 2020]
22-XX - Topological groups, Lie groups [MSC 2020]
22E65 - Infinite-dimensional Lie groups and their Lie algebras: general properties [MSC 2020]
46Lxx - Selfadjoint operator algebras ($C^*$-algebras, von Neumann ($W^*$-) algebras, etc.) [MSC 2020]
Soggetto non controllato Algebra
Banach algebra
Banach groups
Cohomology
Homology
Lie Algebras
Operators
Operators in Hilbert Space
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00255485
Harpe, Pierre de la  
Berlin, : Springer, 1972
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Classical Lie Algebras at Infinity / Ivan Penkov, Crystal Hoyt
Classical Lie Algebras at Infinity / Ivan Penkov, Crystal Hoyt
Autore Penkov, Ivan
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica xiii, 239 p. : ill. ; 24 cm
Altri autori (Persone) Hoyt, Crystal
Soggetto non controllato Borel subalgebras
Bott-Borel-Weil theorem
First reconstruction theorem
Harish-Chandra Modules
Kostant theorem
Lie Algebras
Lie superalgebras
Parabolic subalgebras
Root-reductive Lie algebras
Scheunert theorem
Tensor modules
Weight modules
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0276962
Penkov, Ivan  
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Classical Lie Algebras at Infinity / Ivan Penkov, Crystal Hoyt
Classical Lie Algebras at Infinity / Ivan Penkov, Crystal Hoyt
Autore Penkov, Ivan
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica xiii, 239 p. : ill. ; 24 cm
Altri autori (Persone) Hoyt, Crystal
Soggetto topico 17B05 - Structure theory for Lie algebras and superalgebras [MSC 2020]
17B10 - Representations of Lie algebras and Lie superalgebras, algebraic theory (weights) [MSC 2020]
17B45 - Lie algebras of linear algebraic groups [MSC 2020]
17B55 - Homological methods in Lie (super)algebras [MSC 2020]
18M70 - Algebraic operads, cooperads, and Koszul duality [MSC 2020]
Soggetto non controllato Borel subalgebras
Bott-Borel-Weil theorem
First reconstruction theorem
Harish-Chandra Modules
Kostant theorem
Lie Algebras
Lie superalgebras
Parabolic subalgebras
Root-reductive Lie algebras
Scheunert theorem
Tensor modules
Weight modules
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00276962
Penkov, Ivan  
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Fourier transforms of invariant functions on finite reductive lie algebras / Emmanuel Letellier
Fourier transforms of invariant functions on finite reductive lie algebras / Emmanuel Letellier
Autore Letellier, Emmanuel
Pubbl/distr/stampa Berlin, : Springer, 2005
Descrizione fisica XI, 165 p. ; 24 cm
Soggetto topico 20C33 - Representations of finite groups of Lie type [MSC 2020]
Soggetto non controllato Character-sheaves
Deligne-Lusztig induction
Fourier transform
Lie Algebras
Trigonometric sums
ISBN 978-35-402-4020-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0053759
Letellier, Emmanuel  
Berlin, : Springer, 2005
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Fourier transforms of invariant functions on finite reductive lie algebras / Emmanuel Letellier
Fourier transforms of invariant functions on finite reductive lie algebras / Emmanuel Letellier
Autore Letellier, Emmanuel
Pubbl/distr/stampa Berlin, : Springer, 2005
Descrizione fisica XI, 165 p. ; 24 cm
Soggetto topico 20C33 - Representations of finite groups of Lie type [MSC 2020]
Soggetto non controllato Character-sheaves
Deligne-Lusztig induction
Fourier transform
Lie Algebras
Trigonometric sums
ISBN 978-35-402-4020-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00053759
Letellier, Emmanuel  
Berlin, : Springer, 2005
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Lie Groups / Luiz A. B. San Martin ; Translated from the Portuguese by José Emílio Maiorino and Carlos Augusto Bassani Varea
Lie Groups / Luiz A. B. San Martin ; Translated from the Portuguese by José Emílio Maiorino and Carlos Augusto Bassani Varea
Autore San Martin, Luiz A. B.
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xiv, 371 p. : ill. ; 24 cm
Soggetto topico 22-XX - Topological groups, Lie groups [MSC 2020]
17B30 - Solvable, nilpotent (super)algebras [MSC 2020]
22E46 - Semisimple Lie groups and their representations [MSC 2020]
22E45 - Representations of Lie and linear algebraic groups over real fields: analytic methods [MSC 2020]
22E25 - Nilpotent and solvable Lie groups [MSC 2020]
17B05 - Structure theory for Lie algebras and superalgebras [MSC 2020]
17B20 - Simple, semisimple, reductive (super)algebras [MSC 2020]
22E60 - Lie algebras of Lie groups [MSC 2020]
22Cxx - Compact groups [MSC 2020]
17B22 - Root systems [MSC 2020]
Soggetto non controllato Compact groups
Enveloping algebras
Haar measure
Homomorphism
Lie Algebras
Lie group action
Lie groups
Nilpotent
Topological groups
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0274881
San Martin, Luiz A. B.  
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Lie Groups / Luiz A. B. San Martin ; Translated from the Portuguese by José Emílio Maiorino and Carlos Augusto Bassani Varea
Lie Groups / Luiz A. B. San Martin ; Translated from the Portuguese by José Emílio Maiorino and Carlos Augusto Bassani Varea
Autore San Martin, Luiz A. B.
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xiv, 371 p. : ill. ; 24 cm
Soggetto topico 17B05 - Structure theory for Lie algebras and superalgebras [MSC 2020]
17B20 - Simple, semisimple, reductive (super)algebras [MSC 2020]
17B22 - Root systems [MSC 2020]
17B30 - Solvable, nilpotent (super)algebras [MSC 2020]
22-XX - Topological groups, Lie groups [MSC 2020]
22Cxx - Compact groups [MSC 2020]
22E25 - Nilpotent and solvable Lie groups [MSC 2020]
22E45 - Representations of Lie and linear algebraic groups over real fields: analytic methods [MSC 2020]
22E46 - Semisimple Lie groups and their representations [MSC 2020]
22E60 - Lie algebras of Lie groups [MSC 2020]
Soggetto non controllato Compact groups
Enveloping algebras
Haar measure
Homomorphism
Lie Algebras
Lie group action
Lie groups
Nilpotent
Topological groups
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00274881
San Martin, Luiz A. B.  
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui