The ergodic theory of lattice subgroups [[electronic resource] /] / Alexander Gorodnik and Amos Nevo |
Autore | Gorodnik Alexander <1975-> |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, N.J., : Princeton University Press, 2009 |
Descrizione fisica | 1 online resource (136 p.) |
Disciplina | 515/.48 |
Altri autori (Persone) | NevoAmos <1966-> |
Collana | Annals of mathematics studies |
Soggetto topico |
Ergodic theory
Lie groups Lattice theory Harmonic analysis Dynamics |
Soggetto non controllato |
Absolute continuity
Algebraic group Amenable group Asymptote Asymptotic analysis Asymptotic expansion Automorphism Borel set Bounded function Bounded operator Bounded set (topological vector space) Congruence subgroup Continuous function Convergence of random variables Convolution Coset Counting problem (complexity) Counting Differentiable function Dimension (vector space) Diophantine approximation Direct integral Direct product Discrete group Embedding Equidistribution theorem Ergodic theory Ergodicity Estimation Explicit formulae (L-function) Family of sets Haar measure Hilbert space Hyperbolic space Induced representation Infimum and supremum Initial condition Interpolation theorem Invariance principle (linguistics) Invariant measure Irreducible representation Isometry group Iwasawa group Lattice (group) Lie algebra Linear algebraic group Linear space (geometry) Lipschitz continuity Mass distribution Mathematical induction Maximal compact subgroup Maximal ergodic theorem Measure (mathematics) Mellin transform Metric space Monotonic function Neighbourhood (mathematics) Normal subgroup Number theory One-parameter group Operator norm Orthogonal complement P-adic number Parametrization Parity (mathematics) Pointwise convergence Pointwise Principal homogeneous space Principal series representation Probability measure Probability space Probability Rate of convergence Regular representation Representation theory Resolution of singularities Sobolev space Special case Spectral gap Spectral method Spectral theory Square (algebra) Subgroup Subsequence Subset Symmetric space Tensor algebra Tensor product Theorem Transfer principle Unit sphere Unit vector Unitary group Unitary representation Upper and lower bounds Variable (mathematics) Vector group Vector space Volume form Word metric |
ISBN |
1-282-30380-5
9786612303807 1-4008-3106-7 |
Classificazione | SI 830 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- Chapter One. Main results: Semisimple Lie groups case -- Chapter Two. Examples and applications -- Chapter Three. Definitions, preliminaries, and basic tools -- Chapter Four. Main results and an overview of the proofs -- Chapter Five. Proof of ergodic theorems for S-algebraic groups -- Chapter Six. Proof of ergodic theorems for lattice subgroups -- Chapter Seven. Volume estimates and volume regularity -- Chapter Eight. Comments and complements -- Bibliography -- Index |
Record Nr. | UNINA-9910781200803321 |
Gorodnik Alexander <1975->
![]() |
||
Princeton, N.J., : Princeton University Press, 2009 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Introduction to Algebraic K-Theory. (AM-72), Volume 72 / / John Milnor |
Autore | Milnor John |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (200 pages) |
Disciplina | 512/.4 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Associative rings
Abelian groups Functor theory |
Soggetto non controllato |
Abelian group
Absolute value Addition Algebraic K-theory Algebraic equation Algebraic integer Banach algebra Basis (linear algebra) Big O notation Circle group Coefficient Commutative property Commutative ring Commutator Complex number Computation Congruence subgroup Coprime integers Cyclic group Dedekind domain Direct limit Direct proof Direct sum Discrete valuation Division algebra Division ring Elementary matrix Elliptic function Exact sequence Existential quantification Exterior algebra Factorization Finite group Free abelian group Function (mathematics) Fundamental group Galois extension Galois group General linear group Group extension Hausdorff space Homological algebra Homomorphism Homotopy Ideal (ring theory) Ideal class group Identity element Identity matrix Integral domain Invertible matrix Isomorphism class K-theory Kummer theory Lattice (group) Left inverse Local field Local ring Mathematics Matsumoto's theorem Maximal ideal Meromorphic function Monomial Natural number Noetherian Normal subgroup Number theory Open set Picard group Polynomial Prime element Prime ideal Projective module Quadratic form Quaternion Quotient ring Rational number Real number Right inverse Ring of integers Root of unity Schur multiplier Scientific notation Simple algebra Special case Special linear group Subgroup Summation Surjective function Tensor product Theorem Topological K-theory Topological group Topological space Topology Torsion group Variable (mathematics) Vector space Wedderburn's theorem Weierstrass function Whitehead torsion |
ISBN | 1-4008-8179-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Preface and Guide to the Literature -- Contents -- §1. Projective Modules and K0Λ -- §2 . Constructing Projective Modules -- §3. The Whitehead Group K1Λ -- §4. The Exact Sequence Associated with an Ideal -- §5. Steinberg Groups and the Functor K2 -- §6. Extending the Exact Sequences -- §7. The Case of a Commutative Banach Algebra -- §8. The Product K1Λ ⊗ K1Λ K2Λ -- §9. Computations in the Steinberg Group -- §10. Computation of K2Z -- §11. Matsumoto's Computation of K2 of a Field -- 12. Proof of Matsumoto's Theorem -- §13. More about Dedekind Domains -- §14. The Transfer Homomorphism -- §15. Power Norm Residue Symbols -- §16. Number Fields -- Appendix. Continuous Steinberg Symbols -- Index |
Record Nr. | UNINA-9910154752203321 |
Milnor John
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Introduction to Toric Varieties. (AM-131), Volume 131 / / William Fulton |
Autore | Fulton William |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (171 pages) : illustrations |
Disciplina | 516.3/53 |
Collana | Annals of Mathematics Studies |
Soggetto topico | Toric varieties |
Soggetto non controllato |
Addition
Affine plane Affine space Affine variety Alexander Grothendieck Alexander duality Algebraic curve Algebraic group Atiyah–Singer index theorem Automorphism Betti number Big O notation Characteristic class Chern class Chow group Codimension Cohomology Combinatorics Commutative property Complete intersection Convex polytope Convex set Coprime integers Cotangent space Dedekind sum Dimension (vector space) Dimension Direct proof Discrete valuation ring Discrete valuation Disjoint union Divisor (algebraic geometry) Divisor Dual basis Dual space Equation Equivalence class Equivariant K-theory Euler characteristic Exact sequence Explicit formula Facet (geometry) Fundamental group Graded ring Grassmannian H-vector Hirzebruch surface Hodge theory Homogeneous coordinates Homomorphism Hypersurface Intersection theory Invertible matrix Invertible sheaf Isoperimetric inequality Lattice (group) Leray spectral sequence Limit point Line bundle Line segment Linear subspace Local ring Mathematical induction Mixed volume Moduli space Moment map Monotonic function Natural number Newton polygon Open set Picard group Pick's theorem Polytope Projective space Quadric Quotient space (topology) Regular sequence Relative interior Resolution of singularities Restriction (mathematics) Resultant Riemann–Roch theorem Serre duality Sign (mathematics) Simplex Simplicial complex Simultaneous equations Spectral sequence Subgroup Subset Summation Surjective function Tangent bundle Theorem Topology Toric variety Unit disk Vector space Weil conjecture Zariski topology |
ISBN | 1-4008-8252-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- Errata -- Chapter 1. Definitions and examples -- Chapter 2. Singularities and compactness -- Chapter 3. Orbits, topology, and line bundles -- Chapter 4. Moment maps and the tangent bundle -- Chapter 5. Intersection theory -- Notes -- References -- Index of Notation -- Index |
Record Nr. | UNINA-9910154749903321 |
Fulton William
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Normal Two-Dimensional Singularities. (AM-71), Volume 71 / / Henry B. Laufer |
Autore | Laufer Henry B. |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (177 pages) : illustrations |
Disciplina | 515/.92/23 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Analytic spaces
Singularities (Mathematics) |
Soggetto non controllato |
Analytic function
Analytic set Analytic space Automorphism Bernhard Riemann Big O notation Calculation Chern class Codimension Coefficient Cohomology Compact Riemann surface Complex manifold Computation Connected component (graph theory) Continuous function Contradiction Coordinate system Corollary Covering space Dimension Disjoint union Divisor Dual graph Elliptic curve Elliptic function Embedding Existential quantification Factorization Fiber bundle Finite set Formal power series Hausdorff space Holomorphic function Homeomorphism Homology (mathematics) Intersection (set theory) Intersection number (graph theory) Inverse limit Irreducible component Isolated singularity Iteration Lattice (group) Line bundle Linear combination Line–line intersection Local coordinates Local ring Mathematical induction Maximal ideal Meromorphic function Monic polynomial Nilpotent Normal bundle Open set Parameter Plane curve Pole (complex analysis) Power series Presheaf (category theory) Projective line Quadratic transformation Quantity Riemann surface Riemann–Roch theorem Several complex variables Submanifold Subset Tangent bundle Tangent space Tensor algebra Theorem Topological space Transition function Two-dimensional space Variable (mathematics) Zero divisor Zero of a function Zero set |
ISBN | 1-4008-8174-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- PREFACE -- INTRODUCTION -- CONTENTS -- CHAPTER I. RESOLUTION OF PLANE CURVE SINGULARITIES -- CHAPTER II. RESOLUTION OF SINGULARITIES OF TWO-DIMENSIONAL ANALYTIC SPACES -- CHAPTER III. NORMALIZATION OF TWO-DIMENSIONAL ANALYTIC SPACES -- CHAPTER IV. EXCEPTIONAL SETS -- CHAPTER V. MINIMAL RESOLUTIONS -- CHAPTER VI. EQUIVALENCE OF EMBEDDINGS -- CHAPTER VII. THE LOCAL RING STRUCTURE -- BIBLIOGRAPHY -- INDEX |
Record Nr. | UNINA-9910154751503321 |
Laufer Henry B.
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Outer billiards on kites [[electronic resource] /] / Richard Evan Schwartz |
Autore | Schwartz Richard Evan |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, NJ, : Princeton University Press, c2009 |
Descrizione fisica | 1 online resource (321 p.) |
Disciplina | 516.9 |
Collana | Annals of mathematics studies |
Soggetto topico |
Hyperbolic spaces
Singularities (Mathematics) Transformations (Mathematics) Geometry, Plane |
Soggetto non controllato |
Abelian group
Automorphism Big O notation Bijection Binary number Bisection Borel set C0 Calculation Cantor set Cartesian coordinate system Combination Compass-and-straightedge construction Congruence subgroup Conjecture Conjugacy class Continuity equation Convex lattice polytope Convex polytope Coprime integers Counterexample Cyclic group Diameter Diophantine approximation Diophantine equation Disjoint sets Disjoint union Division by zero Embedding Equation Equivalence class Ergodic theory Ergodicity Factorial Fiber bundle Fibonacci number Fundamental domain Gauss map Geometry Half-integer Homeomorphism Hyperbolic geometry Hyperplane Ideal triangle Intersection (set theory) Interval exchange transformation Inverse function Inverse limit Isometry group Lattice (group) Limit set Line segment Linear algebra Linear function Line–line intersection Main diagonal Modular group Monotonic function Multiple (mathematics) Orthant Outer billiard Parallelogram Parameter Partial derivative Penrose tiling Permutation Piecewise Polygon Polyhedron Polytope Product topology Projective geometry Rectangle Renormalization Rhombus Right angle Rotational symmetry Sanity check Scientific notation Semicircle Sign (mathematics) Special case Square root of 2. Subsequence Summation Symbolic dynamics Symmetry group Tangent Tetrahedron Theorem Toy model Translational symmetry Trapezoid Triangle group Triangle inequality Two-dimensional space Upper and lower bounds Upper half-plane Without loss of generality Yair Minsky |
ISBN |
1-282-45858-2
9786612458583 1-4008-3197-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Preface -- Chapter 1. Introduction -- Part 1. The Erratic Orbits Theorem -- Chapter 2. The Arithmetic Graph -- Chapter 3. The Hexagrid Theorem -- Chapter 4. Period Copying -- Chapter 5. Proof of the Erratic Orbits Theorem -- Part 2. The Master Picture Theorem -- Chapter 6. The Master Picture Theorem -- Chapter 7. The Pinwheel Lemma -- Chapter 8. The Torus Lemma -- Chapter 9. The Strip Functions -- Chapter 10. Proof of the Master Picture Theorem -- Part 3. Arithmetic Graph Structure Theorems -- Chapter 11. Proof of the Embedding Theorem -- Chapter 12. Extension and Symmetry -- Chapter 13. Proof of Hexagrid Theorem I -- Chapter 14. The Barrier Theorem -- Chapter 15. Proof of Hexagrid Theorem II -- Chapter 16. Proof of the Intersection Lemma -- Part 4. Period-Copying Theorems -- Chapter 17. Diophantine Approximation -- Chapter 18. The Diophantine Lemma -- Chapter 19. The Decomposition Theorem -- Chapter 20. Existence of Strong Sequences -- Part 5. The Comet Theorem -- Chapter 21. Structure of the Inferior and Superior Sequences -- Chapter 22. The Fundamental Orbit -- Chapter 23. The Comet Theorem -- Chapter 24. Dynamical Consequences -- Chapter 25. Geometric Consequences -- Part 6. More Structure Theorems -- Chapter 26. Proof of the Copy Theorem -- Chapter 27. Pivot Arcs in the Even Case -- Chapter 28. Proof of the Pivot Theorem -- Chapter 29. Proof of the Period Theorem -- Chapter 30. Hovering Components -- Chapter 31. Proof of the Low Vertex Theorem -- Appendix -- Bibliography -- Index |
Record Nr. | UNINA-9910781200003321 |
Schwartz Richard Evan
![]() |
||
Princeton, NJ, : Princeton University Press, c2009 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|