top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applied multivariate statistical analysis / Wolfgang Karl Hardle, Léopold Simar
Applied multivariate statistical analysis / Wolfgang Karl Hardle, Léopold Simar
Autore Härdle, Wolfgang Karl
Edizione [4. ed]
Pubbl/distr/stampa Berlin ; Heidelberg, : Springer, 2015
Descrizione fisica XIII, 580 p. : ill. ; 24 cm
Altri autori (Persone) Simar, Léopold
Soggetto topico 62H12 - Estimation in multivariate analysis [MSC 2020]
62H25 - Factor analysis and principal components; correspondence analysis [MSC 2020]
62H30 - Classification and discrimination; cluster analysis (statistical aspects) [MSC 2020]
62H17 - Contingency tables [MSC 2020]
62H15 - Hypothesis testing in multivariate analysis [MSC 2020]
62H20 - Measures of association (correlation, canonical correlation, etc.) [MSC 2020]
62H10 - Multivariate distribution of statistics [MSC 2020]
62F25 - Parametric tolerance and confidence regions [MSC 2020]
Soggetto non controllato Cluster analysis
Conjoint Measurement Analysis
Discriminant Analysis
Elastic Net
Hypothesis Testing
Lasso
Multivariate Analysis
Projection Persuit
Quantitative Finance
Sliced Inverse Regression
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0113928
Härdle, Wolfgang Karl  
Berlin ; Heidelberg, : Springer, 2015
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Applied multivariate statistical analysis / Wolfgang Karl Hardle, Léopold Simar
Applied multivariate statistical analysis / Wolfgang Karl Hardle, Léopold Simar
Autore Härdle, Wolfgang K.
Edizione [4. ed]
Pubbl/distr/stampa Berlin ; Heidelberg, : Springer, 2015
Descrizione fisica XIII, 580 p. : ill. ; 24 cm
Altri autori (Persone) Simar, Léopold
Soggetto topico 62F25 - Parametric tolerance and confidence regions [MSC 2020]
62H10 - Multivariate distribution of statistics [MSC 2020]
62H12 - Estimation in multivariate analysis [MSC 2020]
62H15 - Hypothesis testing in multivariate analysis [MSC 2020]
62H17 - Contingency tables [MSC 2020]
62H20 - Measures of association (correlation, canonical correlation, etc.) [MSC 2020]
62H25 - Factor analysis and principal components; correspondence analysis [MSC 2020]
62H30 - Classification and discrimination; cluster analysis (statistical aspects) [MSC 2020]
Soggetto non controllato Cluster analysis
Conjoint Measurement Analysis
Discriminant Analysis
Elastic Net
Hypothesis Testing
Lasso
Multivariate Analysis
Projection Persuit
Quantitative Finance
Sliced Inverse Regression
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00113928
Härdle, Wolfgang K.  
Berlin ; Heidelberg, : Springer, 2015
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Big Data Analytics and Information Science for Business and Biomedical Applications
Big Data Analytics and Information Science for Business and Biomedical Applications
Autore Ahmed S. Ejaz
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (246 p.)
Soggetto topico Humanities
Social interaction
Soggetto non controllato abdominal aortic aneurysm
ant colony system
asymptotic theory
bayesian spatial mixture model
causal and dilated convolutional neural networks
deep learning
DWD
EEG/MEG data
elastic net
emulation
ensembling
entropy-based robust EM
estimation consistency
feature fusion
feature representation
financial time series
generalized linear models
high dimension
high dimensional predictors
high dimensional time-series
high-dimensional
high-dimensional data
information complexity criteria
inverse problem
L2-consistency
Lasso
Medicare data
missingness mechanism
mixture regression
model selection
multicategory classification
nonlocal prior
nonparamteric boostrap
nuisance
penalty methods
post-selection inference
prediction
proximal algorithm
random subspaces
regularization
segmentation
sparse group lasso
sparse PCA
stepwise regression
strong selection consistency
text mining
trend analysis
unconventional likelihood
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557614803321
Ahmed S. Ejaz  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fundamentals of High-Dimensional Statistics : With Exercises and R Labs / Johannes Lederer
Fundamentals of High-Dimensional Statistics : With Exercises and R Labs / Johannes Lederer
Autore Lederer, Johannes
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica xiv, 355 p. : ill. ; 24 cm
Soggetto topico 62-XX - Statistics [MSC 2020]
62H22 - Probabilistic graphical models [MSC 2020]
62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020]
62R07 - Statistical aspects of big data and data science [MSC 2020]
Soggetto non controllato Calibration
Estimation
Graphical Models
High dimensional inference
High-Dimensional Data
High-dimensional statistics
Lasso
Linear regression
Prediction
R labs
Regularization
Sparsity
Statistical inference
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0277448
Lederer, Johannes  
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Fundamentals of High-Dimensional Statistics : With Exercises and R Labs / Johannes Lederer
Fundamentals of High-Dimensional Statistics : With Exercises and R Labs / Johannes Lederer
Autore Lederer, Johannes
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica xiv, 355 p. : ill. ; 24 cm
Soggetto topico 62-XX - Statistics [MSC 2020]
62H22 - Probabilistic graphical models [MSC 2020]
62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020]
62R07 - Statistical aspects of big data and data science [MSC 2020]
Soggetto non controllato Calibration
Estimation
Graphical Models
High dimensional inference
High-Dimensional Data
High-dimensional statistics
Lasso
Linear regression
Prediction
R labs
Regularization
Sparsity
Statistical inference
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00277448
Lederer, Johannes  
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui