top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images
Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images
Autore Bazi Yakoub
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (438 p.)
Soggetto topico Research & information: general
Soggetto non controllato synthetic aperture radar
despeckling
multi-scale
LSTM
sub-pixel
high-resolution remote sensing imagery
road extraction
machine learning
DenseUNet
scene classification
lifting scheme
convolution
CNN
image classification
deep features
hand-crafted features
Sinkhorn loss
remote sensing
text image matching
triplet networks
EfficientNets
LSTM network
convolutional neural network
water identification
water index
semantic segmentation
high-resolution remote sensing image
pixel-wise classification
result correction
conditional random field (CRF)
satellite
object detection
neural networks
single-shot
deep learning
global convolution network
feature fusion
depthwise atrous convolution
high-resolution representations
ISPRS vaihingen
Landsat-8
faster region-based convolutional neural network (FRCNN)
single-shot multibox detector (SSD)
super-resolution
remote sensing imagery
edge enhancement
satellites
open-set domain adaptation
adversarial learning
min-max entropy
pareto ranking
SAR
Sentinel–1
Open Street Map
U–Net
desert
road
infrastructure
mapping
monitoring
deep convolutional networks
outline extraction
misalignments
nearest feature selector
hyperspectral image classification
two stream residual network
Batch Normalization
plant disease detection
precision agriculture
UAV multispectral images
orthophotos registration
3D information
orthophotos segmentation
wildfire detection
convolutional neural networks
densenet
generative adversarial networks
CycleGAN
data augmentation
pavement markings
visibility
framework
urban forests
OUDN algorithm
object-based
high spatial resolution remote sensing
Generative Adversarial Networks
post-disaster
building damage assessment
anomaly detection
Unmanned Aerial Vehicles (UAV)
xBD
feature engineering
orthophoto
unsupervised segmentation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557747903321
Bazi Yakoub  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Remote Sensing-based Disaster Monitoring and Assessment
Advances in Remote Sensing-based Disaster Monitoring and Assessment
Autore Im Jungho
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (232 p.)
Soggetto topico Research & information: general
Soggetto non controllato wildfire
satellite vegetation indices
live fuel moisture
empirical model function
Southern California
chaparral ecosystem
forest fire
forest recovery
satellite remote sensing
vegetation index
burn index
gross primary production
South Korea
land subsidence
PS-InSAR
uneven settlement
building construction
Beijing urban area
floodplain delineation
inaccessible region
machine learning
flash flood
risk
LSSVM
China
Himawari-8
threshold-based algorithm
remote sensing
dryness monitoring
soil moisture
NIR-Red spectral space
Landsat-8
MODIS
Xinjiang province of China
SDE
PE
groundwater level
compressible sediment layer
tropical cyclone formation
WindSat
disaster monitoring
wireless sensor network
debris flow
anomaly detection
deep learning
accelerometer sensor
total precipitable water
Himawari-8 AHI
random forest
deep neural network
XGBoost
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557765003321
Im Jungho  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Imaging Floods and Glacier Geohazards with Remote Sensing
Imaging Floods and Glacier Geohazards with Remote Sensing
Autore Cigna Francesca
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (266 p.)
Soggetto topico Research & information: general
Soggetto non controllato glacier surge
glacier collapse
rock-slope instability
hazard
Landsat
Sentinel 2
Tibet
flood extent mapping
supervised classification
NDWI
synthetic aperture radar (SAR)
web application
synthetic aperture radar
offset tracking
displacements
Sentinel-1
glacier monitoring
flood mapping
damage assessment
SAR image
Landsat-8
Google Earth Engine
GEE
Bangladesh
SAR intensity time series
urban flood mapping
double bounce effect
Hurricane Matthew
flood
FPI
GRACE
terrestrial water storage anomaly
storage deficit
mass balance
snow depth
glacier retreat
surface DEM
elevation change
Sentinel
Secchi disk
chlorophyll a
sediments
phytoplankton
floods
remote sensing
GIS
disaster mapping
Lower Chenab Plain
laserscanning
UAV-structure from Motion
multi-spectral satellite data
synthetic Aperture Radar
glacier lake evolution
glacier river
slope processes
rock fall
cryosphere
fusion
inundation probability
Hurricane Harvey
ADCIRC
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557770603321
Cigna Francesca  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multispectral and Hyperspectral Remote Sensing Data for Mineral Exploration and Environmental Monitoring of Mined Areas
Multispectral and Hyperspectral Remote Sensing Data for Mineral Exploration and Environmental Monitoring of Mined Areas
Autore Pour Amin Beiranvand
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (416 p.)
Soggetto topico Research & information: general
Geography
Soggetto non controllato Toroud–Chahshirin Magmatic Belt (TCMB)
remote sensing
ASTER
hydrothermally altered zones
polymetallic vein-type mineralization
emissivity
emissivity normalization method
dolomite
phosphorite
relative band depth (RBD)
Bowers Terrane
listvenite
hydrothermal/metasomatic alteration minerals
damage zones
Northern Victoria Land
Antarctica
multispectral and radar data
data fusion
gold mineralization
Wadi Beitan–Wadi Rahaba
structural control
Najd Fault System
South Eastern Desert
Egypt
hyperspectral
Goldstrike
Carlin-type
decarbonatization
argillization
Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER)
Sentinel 2
Synthetic Aperture Radar (SAR) data
Egyptian Eastern Desert
transpression and transtension zones
Landsat-8
WorldView-3
the Inglefield Mobile Belt (IMB)
copper-gold mineralization
High Arctic regions
epithermal gold
hydrothermal alteration
Ahar-Arasbaran region
Landsat-7 ETM+
Bayesian Network Classifiers
hyperspectral imaging
drill-core
SWIR
mineral abundance mapping
mineral association
machine learning
band ratios
principal component analysis (PCA)
fuzzy logic modeling
Kashmar–Kerman tectonic zone (KKTZ)
carbonate-hosted Pb-Zn mineralization
Iran
dimensionality reduction
principal component analysis
independent component analysis
minimum noise fraction
fuzzy logic
riverbed
metals
electrical resistivity imaging
tailings
Mar Menor
Cartagena–La Unión
unmanned aerial systems
multispectral
magnetic
geologic mapping
drones
UAV
dust dispersion
spectra
canopy scale
pixel scale
mining area
mineral exploration
multispectral and hyperspectral data
mining
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557499703321
Pour Amin Beiranvand  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Remote Sensing Data Compression
Remote Sensing Data Compression
Autore Lukin Vladimir
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (366 p.)
Soggetto topico Technology: general issues
Soggetto non controllato on-board data compression
CCSDS 123.0-B-2
near-lossless hyperspectral image compression
hyperspectral image coding
graph filterbanks
integer-to-integer transforms
graph signal processing
compact data structure
quadtree
k2-tree
k2-raster
DACs
3D-CALIC
M-CALIC
hyperspectral images
fully convolutional network
semantic segmentation
spectral image
tensor decomposition
HEVC
intra coding
JPEG 2000
high bit-depth compression
multispectral satellite images
crop classification
Landsat-8
Sentinel-2
Elias codes
Simple9
Simple16
PForDelta
Rice codes
hyperspectral scenes
hyperspectral image
lossy compression
real time
FPGA
PCA
JPEG2000
EBCOT
multispectral
hyperspectral
CCSDS
FAPEC
data compression
transform
hyperspectral imaging
on-board processing
GPU
real-time performance
UAV
parallel computing
remote sensing
image quality
image classification
visual quality metrics
spectral–spatial feature
multispectral image compression
partitioned extraction
group convolution
rate-distortion
compressed sensing
invertible projection
coupled dictionary
singular value
task-driven learning
on board compression
transform coding
learned compression
neural networks
variational autoencoder
complexity
real-time compression
on-board compression
real-time transmission
UAVs
compressive sensing
synthetic aperture sonar
underwater sonar imaging
remote sensing data compression
lossless compression
compression impact
computational complexity
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557383103321
Lukin Vladimir  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui