Krylov Methods for Nonsymmetric Linear Systems : From Theory to Computations / Gérard Meurant, Jurjen Duintjer Tebbens |
Autore | Meurant, Gérard |
Pubbl/distr/stampa | Cham, : Springer, 2020 |
Descrizione fisica | xiv, 686 p. : ill. ; 24 cm |
Altri autori (Persone) | Duintjer Tebbens, Jurjen |
Soggetto topico |
65-XX - Numerical analysis [MSC 2020]
15A60 - Norms of matrices, numerical range, applications of functional analysis to matrix theory [MSC 2020] 65F10 - Iterative numerical methods for linear systems [MSC 2020] 65F08 - Preconditioners for iterative methods [MSC 2020] |
Soggetto non controllato |
CMRH
FOM Finite precision arithmetic GMRES Hessenberg IDR family Krylov methods Krylov subspaces Lanczos algorithm Lanczos methods Nonsymmetrical linear systems Q-MR methods Q-OR methods |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0249376 |
Meurant, Gérard | ||
Cham, : Springer, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Krylov Methods for Nonsymmetric Linear Systems : From Theory to Computations / Gérard Meurant, Jurjen Duintjer Tebbens |
Autore | Meurant, Gérard |
Pubbl/distr/stampa | Cham, : Springer, 2020 |
Descrizione fisica | xiv, 686 p. : ill. ; 24 cm |
Altri autori (Persone) | Duintjer Tebbens, Jurjen |
Soggetto topico |
15A60 - Norms of matrices, numerical range, applications of functional analysis to matrix theory [MSC 2020]
65-XX - Numerical analysis [MSC 2020] 65F08 - Preconditioners for iterative methods [MSC 2020] 65F10 - Iterative numerical methods for linear systems [MSC 2020] |
Soggetto non controllato |
CMRH
FOM Finite precision arithmetic GMRES Hessenberg IDR family Krylov methods Krylov subspaces Lanczos algorithm Lanczos methods Nonsymmetrical linear systems Q-MR methods Q-OR methods |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00249376 |
Meurant, Gérard | ||
Cham, : Springer, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Matrices, moments, and quadrature with applications [[electronic resource] /] / Gene H. Golub and Gerard Meurant |
Autore | Golub Gene H (Gene Howard), <1932-2007.> |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, N.J., : Princeton University Press, c2010 |
Descrizione fisica | 1 online resource (376 p.) |
Disciplina | 512.9434 |
Altri autori (Persone) | MeurantGérard A |
Collana | Princeton series in applied mathematics |
Soggetto topico |
Matrices
Numerical analysis |
Soggetto non controllato |
Algorithm
Analysis of algorithms Analytic function Asymptotic analysis Basis (linear algebra) Basis function Biconjugate gradient method Bidiagonal matrix Bilinear form Calculation Characteristic polynomial Chebyshev polynomials Coefficient Complex number Computation Condition number Conjugate gradient method Conjugate transpose Cross-validation (statistics) Curve fitting Degeneracy (mathematics) Determinant Diagonal matrix Dimension (vector space) Eigenvalues and eigenvectors Equation Estimation Estimator Exponential function Factorization Function (mathematics) Function of a real variable Functional analysis Gaussian quadrature Hankel matrix Hermite interpolation Hessenberg matrix Hilbert matrix Holomorphic function Identity matrix Interlacing (bitmaps) Inverse iteration Inverse problem Invertible matrix Iteration Iterative method Jacobi matrix Krylov subspace Laguerre polynomials Lanczos algorithm Linear differential equation Linear regression Linear subspace Logarithm Machine epsilon Matrix function Matrix polynomial Maxima and minima Mean value theorem Meromorphic function Moment (mathematics) Moment matrix Moment problem Monic polynomial Monomial Monotonic function Newton's method Numerical analysis Numerical integration Numerical linear algebra Orthogonal basis Orthogonal matrix Orthogonal polynomials Orthogonal transformation Orthogonality Orthogonalization Orthonormal basis Partial fraction decomposition Polynomial Preconditioner QR algorithm QR decomposition Quadratic form Rate of convergence Recurrence relation Regularization (mathematics) Rotation matrix Singular value Square (algebra) Summation Symmetric matrix Theorem Tikhonov regularization Trace (linear algebra) Triangular matrix Tridiagonal matrix Upper and lower bounds Variable (mathematics) Vector space Weight function |
ISBN |
1-282-45801-9
1-282-93607-7 9786612458019 1-4008-3388-4 |
Classificazione | SK 915 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- PART 1. Theory -- Chapter 1. Introduction -- Chapter 2. Orthogonal Polynomials -- Chapter 3. Properties of Tridiagonal Matrices -- Chapter 4. The Lanczos and Conjugate Gradient Algorithms -- Chapter 5. Computation of the Jacobi Matrices -- Chapter 6. Gauss Quadrature -- Chapter 7. Bounds for Bilinear Forms uTƒ(A)v -- Chapter 8. Extensions to Nonsymmetric Matrices -- Chapter 9. Solving Secular Equations -- PART 2. Applications -- Chapter 10. Examples of Gauss Quadrature Rules -- Chapter 11. Bounds and Estimates for Elements of Functions of Matrices -- Chapter 12. Estimates of Norms of Errors in the Conjugate Gradient Algorithm -- Chapter 13. Least Squares Problems -- Chapter 14. Total Least Squares -- Chapter 15. Discrete Ill-Posed Problems -- Bibliography -- Index |
Record Nr. | UNINA-9910780861503321 |
Golub Gene H (Gene Howard), <1932-2007.> | ||
Princeton, N.J., : Princeton University Press, c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|