top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Krylov Methods for Nonsymmetric Linear Systems : From Theory to Computations / Gérard Meurant, Jurjen Duintjer Tebbens
Krylov Methods for Nonsymmetric Linear Systems : From Theory to Computations / Gérard Meurant, Jurjen Duintjer Tebbens
Autore Meurant, Gérard
Pubbl/distr/stampa Cham, : Springer, 2020
Descrizione fisica xiv, 686 p. : ill. ; 24 cm
Altri autori (Persone) Duintjer Tebbens, Jurjen
Soggetto topico 65-XX - Numerical analysis [MSC 2020]
15A60 - Norms of matrices, numerical range, applications of functional analysis to matrix theory [MSC 2020]
65F10 - Iterative numerical methods for linear systems [MSC 2020]
65F08 - Preconditioners for iterative methods [MSC 2020]
Soggetto non controllato CMRH
FOM
Finite precision arithmetic
GMRES
Hessenberg
IDR family
Krylov methods
Krylov subspaces
Lanczos algorithm
Lanczos methods
Nonsymmetrical linear systems
Q-MR methods
Q-OR methods
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0249376
Meurant, Gérard  
Cham, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Krylov Methods for Nonsymmetric Linear Systems : From Theory to Computations / Gérard Meurant, Jurjen Duintjer Tebbens
Krylov Methods for Nonsymmetric Linear Systems : From Theory to Computations / Gérard Meurant, Jurjen Duintjer Tebbens
Autore Meurant, Gérard
Pubbl/distr/stampa Cham, : Springer, 2020
Descrizione fisica xiv, 686 p. : ill. ; 24 cm
Altri autori (Persone) Duintjer Tebbens, Jurjen
Soggetto topico 15A60 - Norms of matrices, numerical range, applications of functional analysis to matrix theory [MSC 2020]
65-XX - Numerical analysis [MSC 2020]
65F08 - Preconditioners for iterative methods [MSC 2020]
65F10 - Iterative numerical methods for linear systems [MSC 2020]
Soggetto non controllato CMRH
FOM
Finite precision arithmetic
GMRES
Hessenberg
IDR family
Krylov methods
Krylov subspaces
Lanczos algorithm
Lanczos methods
Nonsymmetrical linear systems
Q-MR methods
Q-OR methods
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00249376
Meurant, Gérard  
Cham, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Matrices, moments, and quadrature with applications [[electronic resource] /] / Gene H. Golub and Gerard Meurant
Matrices, moments, and quadrature with applications [[electronic resource] /] / Gene H. Golub and Gerard Meurant
Autore Golub Gene H (Gene Howard), <1932-2007.>
Edizione [Course Book]
Pubbl/distr/stampa Princeton, N.J., : Princeton University Press, c2010
Descrizione fisica 1 online resource (376 p.)
Disciplina 512.9434
Altri autori (Persone) MeurantGérard A
Collana Princeton series in applied mathematics
Soggetto topico Matrices
Numerical analysis
Soggetto non controllato Algorithm
Analysis of algorithms
Analytic function
Asymptotic analysis
Basis (linear algebra)
Basis function
Biconjugate gradient method
Bidiagonal matrix
Bilinear form
Calculation
Characteristic polynomial
Chebyshev polynomials
Coefficient
Complex number
Computation
Condition number
Conjugate gradient method
Conjugate transpose
Cross-validation (statistics)
Curve fitting
Degeneracy (mathematics)
Determinant
Diagonal matrix
Dimension (vector space)
Eigenvalues and eigenvectors
Equation
Estimation
Estimator
Exponential function
Factorization
Function (mathematics)
Function of a real variable
Functional analysis
Gaussian quadrature
Hankel matrix
Hermite interpolation
Hessenberg matrix
Hilbert matrix
Holomorphic function
Identity matrix
Interlacing (bitmaps)
Inverse iteration
Inverse problem
Invertible matrix
Iteration
Iterative method
Jacobi matrix
Krylov subspace
Laguerre polynomials
Lanczos algorithm
Linear differential equation
Linear regression
Linear subspace
Logarithm
Machine epsilon
Matrix function
Matrix polynomial
Maxima and minima
Mean value theorem
Meromorphic function
Moment (mathematics)
Moment matrix
Moment problem
Monic polynomial
Monomial
Monotonic function
Newton's method
Numerical analysis
Numerical integration
Numerical linear algebra
Orthogonal basis
Orthogonal matrix
Orthogonal polynomials
Orthogonal transformation
Orthogonality
Orthogonalization
Orthonormal basis
Partial fraction decomposition
Polynomial
Preconditioner
QR algorithm
QR decomposition
Quadratic form
Rate of convergence
Recurrence relation
Regularization (mathematics)
Rotation matrix
Singular value
Square (algebra)
Summation
Symmetric matrix
Theorem
Tikhonov regularization
Trace (linear algebra)
Triangular matrix
Tridiagonal matrix
Upper and lower bounds
Variable (mathematics)
Vector space
Weight function
ISBN 1-282-45801-9
1-282-93607-7
9786612458019
1-4008-3388-4
Classificazione SK 915
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Preface -- PART 1. Theory -- Chapter 1. Introduction -- Chapter 2. Orthogonal Polynomials -- Chapter 3. Properties of Tridiagonal Matrices -- Chapter 4. The Lanczos and Conjugate Gradient Algorithms -- Chapter 5. Computation of the Jacobi Matrices -- Chapter 6. Gauss Quadrature -- Chapter 7. Bounds for Bilinear Forms uTƒ(A)v -- Chapter 8. Extensions to Nonsymmetric Matrices -- Chapter 9. Solving Secular Equations -- PART 2. Applications -- Chapter 10. Examples of Gauss Quadrature Rules -- Chapter 11. Bounds and Estimates for Elements of Functions of Matrices -- Chapter 12. Estimates of Norms of Errors in the Conjugate Gradient Algorithm -- Chapter 13. Least Squares Problems -- Chapter 14. Total Least Squares -- Chapter 15. Discrete Ill-Posed Problems -- Bibliography -- Index
Record Nr. UNINA-9910780861503321
Golub Gene H (Gene Howard), <1932-2007.>  
Princeton, N.J., : Princeton University Press, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui