Dynamically Coupled Rigid Body-Fluid Flow Systems / Banavara N. Shashikanth |
Autore | Shashikanth, Banavara N. |
Pubbl/distr/stampa | Cham, : Springer, 2021 |
Descrizione fisica | x, 187 p. : ill. ; 24 cm |
Soggetto topico |
37N10 - Dynamical systems in fluid mechanics, oceanography and meteorology [MSC 2020]
70H05 - Hamilton's equations [MSC 2020] 74F10 - Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.) [MSC 2020] 76-XX - Fluid mechanics [MSC 2020] 76B07 - Free-surface potential flows for incompressible inviscid fluids [MSC 2020] 76B47 - Vortex flows for incompressible inviscid fluids [MSC 2020] 76M60 - Symmetry analysis, Lie group and Lie algebra methods applied to problems in fluid mechanics [MSC 2020] |
Soggetto non controllato |
Body-vortex
Body-wave Conserved quantities Dynamically coupled Fluid-structure Hamiltonian Lagrangian Poisson Brackets Symmetries Vortex Dynamics |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00282328 |
Shashikanth, Banavara N.
![]() |
||
Cham, : Springer, 2021 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Impulsive and hybrid dynamical systems : stability, dissipativity, and control / / Wassim M. Haddad, VijaySekhar Chellaboina, Sergey G. Nersesov |
Autore | Haddad Wassim M. <1961-> |
Pubbl/distr/stampa | Princeton, New Jersey ; ; Oxfordshire, England : , : Princeton University Press, , 2006 |
Descrizione fisica | 1 online resource (522 p.) |
Disciplina | 003/.85 |
Collana | Princeton Series in Applied Mathematics |
Soggetto topico |
Automatic control
Control theory Dynamics Discrete-time systems |
Soggetto non controllato |
Actuator
Adaptive control Algorithm Amplitude Analog computer Arbitrarily large Asymptote Asymptotic analysis Axiom Balance equation Bode plot Boundedness Calculation Center of mass (relativistic) Coefficient of restitution Continuous function Control theory Convex set Differentiable function Differential equation Dissipation Dissipative system Dynamical system Dynamical systems theory Energy Equations of motion Equilibrium point Escapement Euler–Lagrange equation Exponential stability Forms of energy Hamiltonian mechanics Hamiltonian system Hermitian matrix Hooke's law Hybrid system Identity matrix Inequality (mathematics) Infimum and supremum Initial condition Instability Interconnection Invariance theorem Isolated system Iterative method Jacobian matrix and determinant Lagrangian (field theory) Lagrangian system Lagrangian Likelihood-ratio test Limit cycle Limit set Linear function Linearization Lipschitz continuity Lyapunov function Lyapunov stability Mass balance Mathematical optimization Melting Mixture Moment of inertia Momentum Monotonic function Negative feedback Nonlinear programming Nonlinear system Nonnegative matrix Optimal control Ordinary differential equation Orthant Parameter Partial differential equation Passive dynamics Poincaré conjecture Potential energy Proof mass Quantity Rate function Requirement Robust control Second law of thermodynamics Semi-infinite Small-gain theorem Special case Spectral radius Stability theory State space Stiffness Supply (economics) Telecommunication Theorem Transpose Uncertainty Uniform boundedness Uniqueness Vector field Vibration Zeroth (software) Zeroth law of thermodynamics |
ISBN | 1-4008-6524-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Preface -- Chapter One. Introduction -- Chapter Two. Stability Theory for Nonlinear Impulsive Dynamical Systems -- Chapter Three. Dissipativity Theory for Nonlinear Impulsive Dynamical Systems -- Chapter Four. Impulsive Nonnegative and Compartmental Dynamical Systems -- Chapter Five. Vector Dissipativity Theory for Large-Scale Impulsive Dynamical Systems -- Chapter Six. Stability and Feedback Interconnections of Dissipative Impulsive Dynamical Systems -- Chapter Seven. Energy-Based Control for Impulsive Port-Controlled Hamiltonian Systems -- Chapter Nine. Optimal Control for Impulsive Dynamical Systems -- Chapter Ten. Disturbance Rejection Control for Nonlinear Impulsive Dynamical Systems -- Chapter Eleven. Robust Control for Nonlinear Uncertain Impulsive Dynamical Systems -- Chapter Twelve. Hybrid Dynamical Systems -- Chapter Thirteen. Poincare Maps and Stability of Periodic Orbits for Hybrid Dynamical Systems -- Appendix A. System Functions for the Clock Escapement Mechanism -- Bibliography -- Index |
Record Nr. | UNINA-9910786749303321 |
Haddad Wassim M. <1961->
![]() |
||
Princeton, New Jersey ; ; Oxfordshire, England : , : Princeton University Press, , 2006 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Impulsive and hybrid dynamical systems : stability, dissipativity, and control / / Wassim M. Haddad, VijaySekhar Chellaboina, Sergey G. Nersesov |
Autore | Haddad Wassim M. <1961-> |
Pubbl/distr/stampa | Princeton, New Jersey ; ; Oxfordshire, England : , : Princeton University Press, , 2006 |
Descrizione fisica | 1 online resource (522 p.) |
Disciplina | 003/.85 |
Collana | Princeton Series in Applied Mathematics |
Soggetto topico |
Automatic control
Control theory Dynamics Discrete-time systems |
Soggetto non controllato |
Actuator
Adaptive control Algorithm Amplitude Analog computer Arbitrarily large Asymptote Asymptotic analysis Axiom Balance equation Bode plot Boundedness Calculation Center of mass (relativistic) Coefficient of restitution Continuous function Control theory Convex set Differentiable function Differential equation Dissipation Dissipative system Dynamical system Dynamical systems theory Energy Equations of motion Equilibrium point Escapement Euler–Lagrange equation Exponential stability Forms of energy Hamiltonian mechanics Hamiltonian system Hermitian matrix Hooke's law Hybrid system Identity matrix Inequality (mathematics) Infimum and supremum Initial condition Instability Interconnection Invariance theorem Isolated system Iterative method Jacobian matrix and determinant Lagrangian (field theory) Lagrangian system Lagrangian Likelihood-ratio test Limit cycle Limit set Linear function Linearization Lipschitz continuity Lyapunov function Lyapunov stability Mass balance Mathematical optimization Melting Mixture Moment of inertia Momentum Monotonic function Negative feedback Nonlinear programming Nonlinear system Nonnegative matrix Optimal control Ordinary differential equation Orthant Parameter Partial differential equation Passive dynamics Poincaré conjecture Potential energy Proof mass Quantity Rate function Requirement Robust control Second law of thermodynamics Semi-infinite Small-gain theorem Special case Spectral radius Stability theory State space Stiffness Supply (economics) Telecommunication Theorem Transpose Uncertainty Uniform boundedness Uniqueness Vector field Vibration Zeroth (software) Zeroth law of thermodynamics |
ISBN | 1-4008-6524-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Preface -- Chapter One. Introduction -- Chapter Two. Stability Theory for Nonlinear Impulsive Dynamical Systems -- Chapter Three. Dissipativity Theory for Nonlinear Impulsive Dynamical Systems -- Chapter Four. Impulsive Nonnegative and Compartmental Dynamical Systems -- Chapter Five. Vector Dissipativity Theory for Large-Scale Impulsive Dynamical Systems -- Chapter Six. Stability and Feedback Interconnections of Dissipative Impulsive Dynamical Systems -- Chapter Seven. Energy-Based Control for Impulsive Port-Controlled Hamiltonian Systems -- Chapter Nine. Optimal Control for Impulsive Dynamical Systems -- Chapter Ten. Disturbance Rejection Control for Nonlinear Impulsive Dynamical Systems -- Chapter Eleven. Robust Control for Nonlinear Uncertain Impulsive Dynamical Systems -- Chapter Twelve. Hybrid Dynamical Systems -- Chapter Thirteen. Poincare Maps and Stability of Periodic Orbits for Hybrid Dynamical Systems -- Appendix A. System Functions for the Clock Escapement Mechanism -- Bibliography -- Index |
Record Nr. | UNINA-9910812330303321 |
Haddad Wassim M. <1961->
![]() |
||
Princeton, New Jersey ; ; Oxfordshire, England : , : Princeton University Press, , 2006 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Mathematical Gauge Theory : With Applications to the Standard Model of Particle Physics / Mark J.D. Hamilton |
Autore | Hamilton, Mark J. D. |
Pubbl/distr/stampa | Cham, : Springer, 2017 |
Descrizione fisica | xviii, 657 p. : ill. ; 24 cm |
Soggetto topico |
15A66 - Clifford algebras, spinors [MSC 2020]
22E70 - Applications of Lie groups to physics; explicit representations [MSC 2020] 81Vxx - Applications of quantum theory to specific physical systems [MSC 2020] 81T13 - Yang-Mills and other gauge theories in quantum field theory [MSC 2020] 55R10 - Fiber bundles in algebraic topology [MSC 2020] 53C27 - Spin and Spin$^c$ geometry [MSC 2020] 53C05 - Connections, general theory [MSC 2020] 22E60 - Lie algebras of Lie groups [MSC 2020] 57S15 - Compact Lie groups of differentiable transformations [MSC 2020] 81R40 - Symmetry breaking in quantum theory [MSC 2020] |
Soggetto non controllato |
Connections and curvature
Electroweak interactions Gauge Theory Gauge theory and Lagrangians Gauge theory mathematics Gauge theory of the Standard Model Grand unified theory Higgs Boson Higgs Boson Standard Model Lagrangian Principal bundles Quantum chromodynamics qcd theory Spinors Spontaneous symmetry breaking Standard model of elementary particle physics Vector bundles |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0124274 |
Hamilton, Mark J. D.
![]() |
||
Cham, : Springer, 2017 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Mathematical Gauge Theory : With Applications to the Standard Model of Particle Physics / Mark J.D. Hamilton |
Autore | Hamilton, Mark J. D. |
Pubbl/distr/stampa | Cham, : Springer, 2017 |
Descrizione fisica | xviii, 657 p. : ill. ; 24 cm |
Soggetto topico |
15A66 - Clifford algebras, spinors [MSC 2020]
22E60 - Lie algebras of Lie groups [MSC 2020] 22E70 - Applications of Lie groups to physics; explicit representations [MSC 2020] 53C05 - Connections, general theory [MSC 2020] 53C27 - Spin and Spin$^c$ geometry [MSC 2020] 55R10 - Fiber bundles in algebraic topology [MSC 2020] 57S15 - Compact Lie groups of differentiable transformations [MSC 2020] 81R40 - Symmetry breaking in quantum theory [MSC 2020] 81T13 - Yang-Mills and other gauge theories in quantum field theory [MSC 2020] 81Vxx - Applications of quantum theory to specific physical systems [MSC 2020] |
Soggetto non controllato |
Connections and curvature
Electroweak interactions Gauge Theory Gauge theory and Lagrangians Gauge theory mathematics Gauge theory of the Standard Model Grand unified theory Higgs Boson Higgs Boson Standard Model Lagrangian Principal bundles Quantum Chromodynamics Spinors Spontaneous symmetry breaking Standard model of elementary particle physics Vector bundles |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00124274 |
Hamilton, Mark J. D.
![]() |
||
Cham, : Springer, 2017 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
The Spectral Theory of Toeplitz Operators. (AM-99), Volume 99 / / L. Boutet de Monvel, Victor Guillemin |
Autore | Boutet de Monvel L. |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (168 pages) |
Disciplina | 515.7/246 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Toeplitz operators
Spectral theory (Mathematics) |
Soggetto non controllato |
Algebraic variety
Asymptotic analysis Asymptotic expansion Big O notation Boundary value problem Change of variables Chern class Codimension Cohomology Compact group Complex manifold Complex vector bundle Connection form Contact geometry Corollary Cotangent bundle Curvature form Diffeomorphism Differentiable manifold Dimensional analysis Discrete spectrum Eigenvalues and eigenvectors Elaboration Elliptic operator Embedding Equivalence class Existential quantification Exterior (topology) Fourier integral operator Fourier transform Hamiltonian vector field Holomorphic function Homogeneous function Hypoelliptic operator Integer Integral curve Integral transform Invariant subspace Lagrangian (field theory) Lagrangian Limit point Line bundle Linear map Mathematics Metaplectic group Natural number Normal space One-form Open set Operator (physics) Oscillatory integral Parallel transport Parameter Parametrix Periodic function Polynomial Projection (linear algebra) Projective variety Pseudo-differential operator Q.E.D. Quadratic form Quantity Quotient ring Real number Scientific notation Self-adjoint Smoothness Spectral theorem Spectral theory Square root Submanifold Summation Support (mathematics) Symplectic geometry Symplectic group Symplectic manifold Symplectic vector space Tangent space Theorem Todd class Toeplitz algebra Toeplitz matrix Toeplitz operator Trace formula Transversal (geometry) Trigonometric functions Variable (mathematics) Vector bundle Vector field Vector space Volume form Wave front set |
ISBN | 1-4008-8144-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- TABLE OF CONTENTS -- §1. Introduction -- §2. GENERALIZED TOEPLITZ OPERATORS -- §3. FOURIER INTEGRAL OPERATORS OF HERMITE TYPE -- §4. THE METAPLECTIC REPRESENTATION -- §5. METALINEAR AND METAPLECTIC STRUCTURES ON MANIFOLDS -- §6. ISOTROPIC SUBSPACES OF SYMPLECTIC VECTOR SPACES -- §7. THE COMPOSITION THEOREM -- §8. THE PROOF OF THEOREM 7.5 -- §9. PULL-BACKS, PUSH-FORWARDS AND EXTERIOR TENSOR PRODUCTS -- §10. THE TRANSPORT EQUATION -- §11. SYMBOLIC PROPERTIES OF TOEPLITZ OPERATORS -- §12. THE TRACE FORMULA -- §13. SPECTRAL PROPERTIES OF TOEPLITZ OPERATORS -- §14. THE HILBERT POLYNOMIAL -- §15. SOME CONCLUDING REMARKS -- BIBLIOGRAPHY -- APPENDIX: QUANTIZED CONTACT STRUCTURES -- Backmatter |
Record Nr. | UNINA-9910154743403321 |
Boutet de Monvel L.
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
The inverse problem of the calculus of variations : local and global theory / Dmitry V. Zenkov |
Autore | Zenkov, Dmitry V. |
Pubbl/distr/stampa | [Amsterdam], : Atlantis, 2015 |
Descrizione fisica | IX, 289 p. : ill. ; 24 cm |
Soggetto topico |
49-XX - Calculus of variations and optimal control; optimization [MSC 2020]
49Q20 - Variational problems in a geometric measure-theoretic setting [MSC 2020] 49Sxx - Variational principles of physics [MSC 2020] 49N45 - Inverse problems in optimal control [MSC 2020] 00B15 - Collections of articles of miscellaneous specific interest [MSC 2020] |
Soggetto non controllato |
Euler-Lagrange form
Helmholtz conditions Lagrangian Source form Variational sequence |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0114046 |
Zenkov, Dmitry V.
![]() |
||
[Amsterdam], : Atlantis, 2015 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
The inverse problem of the calculus of variations : local and global theory / Dmitry V. Zenkov |
Autore | Zenkov, Dmitry V. |
Pubbl/distr/stampa | [Amsterdam], : Atlantis, 2015 |
Descrizione fisica | IX, 289 p. : ill. ; 24 cm |
Soggetto topico |
00B15 - Collections of articles of miscellaneous specific interest [MSC 2020]
49-XX - Calculus of variations and optimal control; optimization [MSC 2020] 49N45 - Inverse problems in optimal control [MSC 2020] 49Q20 - Variational problems in a geometric measure-theoretic setting [MSC 2020] 49Sxx - Variational principles of physics [MSC 2020] |
Soggetto non controllato |
Euler-Lagrange form
Helmholtz conditions Lagrangian Source form Variational sequence |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00114046 |
Zenkov, Dmitry V.
![]() |
||
[Amsterdam], : Atlantis, 2015 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|