Chaotic transitions in deterministic and stochastic dynamical systems : applications of Melnikov processes in engineering, physics, and neuroscience / / Emil Simiu |
Autore | Simiu Emil |
Pubbl/distr/stampa | Princeton, New Jersey : , : Princeton University Press, , 2002 |
Descrizione fisica | 1 online resource (244 p.) |
Disciplina | 515/.352 |
Collana | Princeton Series in Applied Mathematics |
Soggetto topico |
Differentiable dynamical systems
Chaotic behavior in systems Stochastic systems |
Soggetto non controllato |
Affine transformation
Amplitude Arbitrarily large Attractor Autocovariance Big O notation Central limit theorem Change of variables Chaos theory Coefficient of variation Compound Probability Computational problem Control theory Convolution Coriolis force Correlation coefficient Covariance function Cross-covariance Cumulative distribution function Cutoff frequency Deformation (mechanics) Derivative Deterministic system Diagram (category theory) Diffeomorphism Differential equation Dirac delta function Discriminant Dissipation Dissipative system Dynamical system Eigenvalues and eigenvectors Equations of motion Even and odd functions Excitation (magnetic) Exponential decay Extreme value theory Flow velocity Fluid dynamics Forcing (recursion theory) Fourier series Fourier transform Fractal dimension Frequency domain Gaussian noise Gaussian process Harmonic analysis Harmonic function Heteroclinic orbit Homeomorphism Homoclinic orbit Hyperbolic point Inference Initial condition Instability Integrable system Invariant manifold Iteration Joint probability distribution LTI system theory Limit cycle Linear differential equation Logistic map Marginal distribution Moduli (physics) Multiplicative noise Noise (electronics) Nonlinear control Nonlinear system Ornstein–Uhlenbeck process Oscillation Parameter space Parameter Partial differential equation Perturbation function Phase plane Phase space Poisson distribution Probability density function Probability distribution Probability theory Probability Production–possibility frontier Relative velocity Scale factor Shear stress Spectral density Spectral gap Standard deviation Stochastic process Stochastic resonance Stochastic Stream function Surface stress Symbolic dynamics The Signal and the Noise Topological conjugacy Transfer function Variance Vorticity |
ISBN |
0-691-05094-5
1-4008-3250-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Preface -- Chapter 1. Introduction -- PART 1. FUNDAMENTALS -- Chapter 2. Transitions in Deterministic Systems and the Melnikov Function -- Chapter 3. Chaos in Deterministic Systems and the Melnikov Function -- Chapter 4. Stochastic Processes -- Chapter 5. Chaotic Transitions in Stochastic Dynamical Systems and the Melnikov Process -- PART 2. APPLICATIONS -- Chapter 6. Vessel Capsizing -- Chapter 7. Open-Loop Control of Escapes in Stochastically Excited Systems -- Chapter 8. Stochastic Resonance -- Chapter 9. Cutoff Frequency of Experimentally Generated Noise for a First-Order Dynamical System -- Chapter 10. Snap-Through of Transversely Excited Buckled Column -- Chapter 11. Wind-Induced Along-Shore Currents over a Corrugated Ocean Floor -- Chapter 12. The Auditory Nerve Fiber as a Chaotic Dynamical System -- Appendix A1 Derivation of Expression for the Melnikov Function -- Appendix A2 Construction of Phase Space Slice through Stable and Unstable Manifolds -- Appendix A3 Topological Conjugacy -- Appendix A4 Properties of Space ∑2 -- Appendix A5 Elements of Probability Theory -- Appendix A6 Mean Upcrossing Rate τu-1 for Gaussian Processes -- Appendix A7 Mean Escape Rate τ∊-1 for Systems Excited by White Noise -- References -- Index |
Record Nr. | UNINA-9910786748903321 |
Simiu Emil | ||
Princeton, New Jersey : , : Princeton University Press, , 2002 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Chaotic transitions in deterministic and stochastic dynamical systems : applications of Melnikov processes in engineering, physics, and neuroscience / / Emil Simiu |
Autore | Simiu Emil |
Pubbl/distr/stampa | Princeton, New Jersey : , : Princeton University Press, , 2002 |
Descrizione fisica | 1 online resource (244 p.) |
Disciplina | 515/.352 |
Collana | Princeton Series in Applied Mathematics |
Soggetto topico |
Differentiable dynamical systems
Chaotic behavior in systems Stochastic systems |
Soggetto non controllato |
Affine transformation
Amplitude Arbitrarily large Attractor Autocovariance Big O notation Central limit theorem Change of variables Chaos theory Coefficient of variation Compound Probability Computational problem Control theory Convolution Coriolis force Correlation coefficient Covariance function Cross-covariance Cumulative distribution function Cutoff frequency Deformation (mechanics) Derivative Deterministic system Diagram (category theory) Diffeomorphism Differential equation Dirac delta function Discriminant Dissipation Dissipative system Dynamical system Eigenvalues and eigenvectors Equations of motion Even and odd functions Excitation (magnetic) Exponential decay Extreme value theory Flow velocity Fluid dynamics Forcing (recursion theory) Fourier series Fourier transform Fractal dimension Frequency domain Gaussian noise Gaussian process Harmonic analysis Harmonic function Heteroclinic orbit Homeomorphism Homoclinic orbit Hyperbolic point Inference Initial condition Instability Integrable system Invariant manifold Iteration Joint probability distribution LTI system theory Limit cycle Linear differential equation Logistic map Marginal distribution Moduli (physics) Multiplicative noise Noise (electronics) Nonlinear control Nonlinear system Ornstein–Uhlenbeck process Oscillation Parameter space Parameter Partial differential equation Perturbation function Phase plane Phase space Poisson distribution Probability density function Probability distribution Probability theory Probability Production–possibility frontier Relative velocity Scale factor Shear stress Spectral density Spectral gap Standard deviation Stochastic process Stochastic resonance Stochastic Stream function Surface stress Symbolic dynamics The Signal and the Noise Topological conjugacy Transfer function Variance Vorticity |
ISBN |
0-691-05094-5
1-4008-3250-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Preface -- Chapter 1. Introduction -- PART 1. FUNDAMENTALS -- Chapter 2. Transitions in Deterministic Systems and the Melnikov Function -- Chapter 3. Chaos in Deterministic Systems and the Melnikov Function -- Chapter 4. Stochastic Processes -- Chapter 5. Chaotic Transitions in Stochastic Dynamical Systems and the Melnikov Process -- PART 2. APPLICATIONS -- Chapter 6. Vessel Capsizing -- Chapter 7. Open-Loop Control of Escapes in Stochastically Excited Systems -- Chapter 8. Stochastic Resonance -- Chapter 9. Cutoff Frequency of Experimentally Generated Noise for a First-Order Dynamical System -- Chapter 10. Snap-Through of Transversely Excited Buckled Column -- Chapter 11. Wind-Induced Along-Shore Currents over a Corrugated Ocean Floor -- Chapter 12. The Auditory Nerve Fiber as a Chaotic Dynamical System -- Appendix A1 Derivation of Expression for the Melnikov Function -- Appendix A2 Construction of Phase Space Slice through Stable and Unstable Manifolds -- Appendix A3 Topological Conjugacy -- Appendix A4 Properties of Space ∑2 -- Appendix A5 Elements of Probability Theory -- Appendix A6 Mean Upcrossing Rate τu-1 for Gaussian Processes -- Appendix A7 Mean Escape Rate τ∊-1 for Systems Excited by White Noise -- References -- Index |
Record Nr. | UNINA-9910827211303321 |
Simiu Emil | ||
Princeton, New Jersey : , : Princeton University Press, , 2002 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Graph theoretic methods in multiagent networks / / Mehran Mesbahi and Magnus Egerstedt |
Autore | Mesbahi Mehran |
Edizione | [STU student edition] |
Pubbl/distr/stampa | Princeton : , : Princeton University Press, , [2010] |
Descrizione fisica | 1 online resource (424 pages) |
Disciplina | 006.3 |
Collana | Princeton series in applied mathematics |
Soggetto topico |
Network analysis (Planning) - Graphic methods
Multiagent systems - Mathematical models |
Soggetto non controllato |
Addition
Adjacency matrix Algebraic graph theory Algorithm Automorphism Bipartite graph Cardinality Cartesian product Circulant graph Combinatorics Complete graph Computation Connectivity (graph theory) Controllability Convex combination Corollary Cycle graph (algebra) Cycle space Degree (graph theory) Degree matrix Diagonal matrix Diameter Differentiable function Dimension Directed graph Division by zero Dynamical system Eigenvalues and eigenvectors Equilibrium point Estimation Estimator Existential quantification Extremal graph theory Graph (discrete mathematics) Graph theory Identity matrix Incidence matrix Information exchange Initial condition Interconnection Iteration Kalman filter Kronecker product LTI system theory LaSalle's invariance principle Laplacian matrix Least squares Line graph Linear map Lipschitz continuity Lyapunov function Lyapunov stability Markov chain Mathematical optimization Matrix exponential Measurement Multi-agent system Nash equilibrium Natural number Network topology Nonnegative matrix Notation Observability Optimal control Optimization problem Pairwise Parameter Path graph Permutation matrix Permutation Positive semidefinite Positive-definite matrix Probability Quantity Random graph Random variable Rate of convergence Requirement Result Robotics Scientific notation Sensor Sign (mathematics) Simplicial complex Special case Spectral graph theory Stochastic matrix Strongly connected component Subset Summation Supergraph Symmetric matrix Systems theory Theorem Theory Unit interval Upper and lower bounds Variable (mathematics) Vector space Without loss of generality |
ISBN |
9781400835355 (electronic book)
1-282-97910-8 9786612979101 1-4008-3535-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Preface -- Notation -- PART 1. FOUNDATIONS -- Chapter 1. Introduction -- Chapter 2. Graph Theory -- Chapter 3. The Agreement Protocol: Part I-The Static Case -- Chapter 4. The Agreement Protocol: Part II-Lyapunov and LaSalle -- Chapter 5. Probabilistic Analysis of Networks and Protocols -- PART 2. MULTIAGENT NETWORKS -- Chapter 6. Formation Control -- Chapter 7. Mobile Robots -- Chapter 8. Distributed Estimation -- Chapter 9. Social Networks, Epidemics, and Games -- PART 3. NETWORKS AS SYSTEMS -- Chapter 10. Agreement with Inputs and Outputs -- Chapter 11. Synthesis of Networks -- Chapter 12. Dynamic Graph Processes -- Chapter 13. Higher-order Networks -- Appendix A. -- Bibliography -- Index |
Record Nr. | UNINA-9910785659103321 |
Mesbahi Mehran | ||
Princeton : , : Princeton University Press, , [2010] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Graph theoretic methods in multiagent networks / / Mehran Mesbahi and Magnus Egerstedt |
Autore | Mesbahi Mehran |
Edizione | [STU student edition] |
Pubbl/distr/stampa | Princeton : , : Princeton University Press, , [2010] |
Descrizione fisica | 1 online resource (424 pages) |
Disciplina | 006.3 |
Collana | Princeton series in applied mathematics |
Soggetto topico |
Network analysis (Planning) - Graphic methods
Multiagent systems - Mathematical models |
Soggetto non controllato |
Addition
Adjacency matrix Algebraic graph theory Algorithm Automorphism Bipartite graph Cardinality Cartesian product Circulant graph Combinatorics Complete graph Computation Connectivity (graph theory) Controllability Convex combination Corollary Cycle graph (algebra) Cycle space Degree (graph theory) Degree matrix Diagonal matrix Diameter Differentiable function Dimension Directed graph Division by zero Dynamical system Eigenvalues and eigenvectors Equilibrium point Estimation Estimator Existential quantification Extremal graph theory Graph (discrete mathematics) Graph theory Identity matrix Incidence matrix Information exchange Initial condition Interconnection Iteration Kalman filter Kronecker product LTI system theory LaSalle's invariance principle Laplacian matrix Least squares Line graph Linear map Lipschitz continuity Lyapunov function Lyapunov stability Markov chain Mathematical optimization Matrix exponential Measurement Multi-agent system Nash equilibrium Natural number Network topology Nonnegative matrix Notation Observability Optimal control Optimization problem Pairwise Parameter Path graph Permutation matrix Permutation Positive semidefinite Positive-definite matrix Probability Quantity Random graph Random variable Rate of convergence Requirement Result Robotics Scientific notation Sensor Sign (mathematics) Simplicial complex Special case Spectral graph theory Stochastic matrix Strongly connected component Subset Summation Supergraph Symmetric matrix Systems theory Theorem Theory Unit interval Upper and lower bounds Variable (mathematics) Vector space Without loss of generality |
ISBN |
9781400835355 (electronic book)
1-282-97910-8 9786612979101 1-4008-3535-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Preface -- Notation -- PART 1. FOUNDATIONS -- Chapter 1. Introduction -- Chapter 2. Graph Theory -- Chapter 3. The Agreement Protocol: Part I-The Static Case -- Chapter 4. The Agreement Protocol: Part II-Lyapunov and LaSalle -- Chapter 5. Probabilistic Analysis of Networks and Protocols -- PART 2. MULTIAGENT NETWORKS -- Chapter 6. Formation Control -- Chapter 7. Mobile Robots -- Chapter 8. Distributed Estimation -- Chapter 9. Social Networks, Epidemics, and Games -- PART 3. NETWORKS AS SYSTEMS -- Chapter 10. Agreement with Inputs and Outputs -- Chapter 11. Synthesis of Networks -- Chapter 12. Dynamic Graph Processes -- Chapter 13. Higher-order Networks -- Appendix A. -- Bibliography -- Index |
Record Nr. | UNINA-9910816716403321 |
Mesbahi Mehran | ||
Princeton : , : Princeton University Press, , [2010] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|