top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images
Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images
Autore Bazi Yakoub
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (438 p.)
Soggetto topico Research and information: general
Soggetto non controllato 3D information
adversarial learning
anomaly detection
Batch Normalization
building damage assessment
CNN
conditional random field (CRF)
convolution
convolutional neural network
convolutional neural networks
CycleGAN
data augmentation
deep convolutional networks
deep features
deep learning
densenet
DenseUNet
depthwise atrous convolution
desert
despeckling
edge enhancement
EfficientNets
faster region-based convolutional neural network (FRCNN)
feature engineering
feature fusion
framework
generative adversarial networks
Generative Adversarial Networks
global convolution network
hand-crafted features
high spatial resolution remote sensing
high-resolution remote sensing image
high-resolution remote sensing imagery
high-resolution representations
hyperspectral image classification
image classification
infrastructure
ISPRS vaihingen
Landsat-8
lifting scheme
LSTM
LSTM network
machine learning
mapping
min-max entropy
misalignments
monitoring
multi-scale
nearest feature selector
neural networks
object detection
object-based
Open Street Map
open-set domain adaptation
orthophoto
orthophotos registration
orthophotos segmentation
OUDN algorithm
outline extraction
pareto ranking
pavement markings
pixel-wise classification
plant disease detection
post-disaster
precision agriculture
remote sensing
remote sensing imagery
result correction
road
road extraction
SAR
satellite
satellites
scene classification
semantic segmentation
Sentinel-1
single-shot
single-shot multibox detector (SSD)
Sinkhorn loss
sub-pixel
super-resolution
synthetic aperture radar
text image matching
triplet networks
two stream residual network
U-Net
UAV multispectral images
Unmanned Aerial Vehicles (UAV)
unsupervised segmentation
urban forests
visibility
water identification
water index
wildfire detection
xBD
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557747903321
Bazi Yakoub  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Flood Forecasting Using Machine Learning Methods
Flood Forecasting Using Machine Learning Methods
Autore Chang Fi-John
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 online resource (376 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato adaptive neuro-fuzzy inference system (ANFIS)
ANFIS
ANN
ANN-based models
artificial intelligence
artificial neural network
artificial neural networks
backtracking search optimization algorithm (BSA)
bat algorithm
bees algorithm
big data
classification and regression trees (CART)
convolutional neural networks
cultural algorithm
data assimilation
data forward prediction
data scarce basins
data science
database
decision tree
deep learning
disasters
Dongting Lake
early flood warning systems
empirical wavelet transform
ensemble empirical mode decomposition (EEMD)
ensemble machine learning
ensemble technique
extreme event management
extreme learning machine (ELM)
flash-flood
flood events
flood forecast
flood forecasting
flood inundation map
flood prediction
flood routing
flood susceptibility modeling
forecasting
Google Maps
Haraz watershed
high-resolution remote-sensing images
hybrid &
hybrid neural network
hydrograph predictions
hydroinformatics
hydrologic model
hydrologic models
hydrometeorology
improved bat algorithm
invasive weed optimization
Karahan flood
lag analysis
Lower Yellow River
LSTM
LSTM network
machine learning
machine learning methods
method of tracking energy differences (MTED)
micro-model
monthly streamflow forecasting
Muskingum model
natural hazards &
nonlinear Muskingum model
optimization
parameters
particle filter algorithm
particle swarm optimization
phase space reconstruction
postprocessing
precipitation-runoff
rainfall-runoff
random forest
rating curve method
real-time
recurrent nonlinear autoregressive with exogenous inputs (RNARX)
runoff series
self-organizing map
self-organizing map (SOM)
sensitivity
soft computing
St. Venant equations
stopping criteria
streamflow predictions
superpixel
support vector machine
survey
the Three Gorges Dam
the upper Yangtze River
time series prediction
uncertainty
urban water bodies
water level forecast
Wilson flood
wolf pack algorithm
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346688303321
Chang Fi-John  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui