Recent Advances in Indoor Localization Systems and Technologies
| Recent Advances in Indoor Localization Systems and Technologies |
| Autore | Simon Gyula |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
| Descrizione fisica | 1 online resource (502 p.) |
| Soggetto topico | Technology: general issues |
| Soggetto non controllato |
5G system
Access Point Selection adaptive filter adaptive Kalman filter assistive technology automated data acquisition automated progress reporting autoregressive model azimuth estimation bearing estimation Bluetooth Low Energy C-Means carrier phase channel state information closed-form solution computer vision Cramer-Rao lower bound data fusion deep learning deep neural network (DNN) differential pseudolite system DWM1000 extended kalman filter extended Kalman filter feature extraction filter fingerprinting finite memory structure fusion navigation Gaussian model genetic algorithm geomagnetic positioning geometric dilution of precision GPS signal heading estimation hidden Markov models (HMM) hybrid localization hybrid positioning I/O detection indoor localization indoor localization technologies indoor location recognition indoor navigation indoor positioning Indoor Positioning System indoor ranging algorithm infinite memory structure integrity monitoring internet of things K-Means Kalman filter laser range finder localization location fingerprinting LOS machine learning markers mobile devices mobile fingerprinting mobile robot mobile robots model based techniques modified probabilistic data association (MPDA) multi-label convolutional support vector machine (M-CSVM) multi-path detection multilayer perceptron navigational system NLOS NLOS and MP discrimination NLOS identification optimization methods particle filter path planning PDR pedestrian dead reckoning pedestrian dead reckoning (PDR) photodiode array position estimation positioning applications proximity sensors quality control random forest received signal strength (RSS) received signal strength indication (RSSI) received signal strength indicator reflection noise reliability remote sensing technologies RSS-fingerprint semisupervised learning sensor fusion frameworks signal processing smart buildings smartphone smartphone sensors smoother SVM target tracking time of arrival (TOA) tracking resources trajectory learning transparent obstacle recognition trilateration UWB visually impaired visually impaired (VI) VPR Wi-Fi fine timing measurement Wi-Fi fingerprint positioning Wi-Fi indoor positioning Wi-Fi received signal strength indicator (RSSI) wireless sensor network WLAN |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557333003321 |
Simon Gyula
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Research in Metabolomics via Nuclear Magnetic Resonance Spectroscopy: Data Mining, Biochemistry and Clinical Chemistry
| Research in Metabolomics via Nuclear Magnetic Resonance Spectroscopy: Data Mining, Biochemistry and Clinical Chemistry |
| Autore | Vignoli Alessia |
| Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
| Descrizione fisica | 1 online resource (136 p.) |
| Soggetto topico |
Biochemistry
Biology, life sciences Research and information: general |
| Soggetto non controllato |
artificial intelligence
biomarkers clustering coffee beans coffee processing coffee varieties colorectal cancer COVID-19 deep learning EOS exhaled breath condensate health science human plasma LOS machine learning metabolomics n/a nanoparticles exposure neonatal sepsis NMR NMR metabolomics NMR spectroscopy nuclear magnetic resonance nuclear magnetic resonance spectroscopy phenotyping post-harvest treatment preterm birth relapse surgery |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | Research in Metabolomics via Nuclear Magnetic Resonance Spectroscopy |
| Record Nr. | UNINA-9910585936303321 |
Vignoli Alessia
|
||
| Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||