top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Approximate Bayesian Inference
Approximate Bayesian Inference
Autore Alquier Pierre
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (508 p.)
Soggetto topico Research & information: general
Mathematics & science
Soggetto non controllato bifurcation
dynamical systems
Edward–Sokal coupling
mean-field
Kullback–Leibler divergence
variational inference
Bayesian statistics
machine learning
variational approximations
PAC-Bayes
expectation-propagation
Markov chain Monte Carlo
Langevin Monte Carlo
sequential Monte Carlo
Laplace approximations
approximate Bayesian computation
Gibbs posterior
MCMC
stochastic gradients
neural networks
Approximate Bayesian Computation
differential evolution
Markov kernels
discrete state space
ergodicity
Markov chain
probably approximately correct
variational Bayes
Bayesian inference
Markov Chain Monte Carlo
Sequential Monte Carlo
Riemann Manifold Hamiltonian Monte Carlo
integrated nested laplace approximation
fixed-form variational Bayes
stochastic volatility
network modeling
network variability
Stiefel manifold
MCMC-SAEM
data imputation
Bethe free energy
factor graphs
message passing
variational free energy
variational message passing
approximate Bayesian computation (ABC)
differential privacy (DP)
sparse vector technique (SVT)
Gaussian
particle flow
variable flow
Langevin dynamics
Hamilton Monte Carlo
non-reversible dynamics
control variates
thinning
meta-learning
hyperparameters
priors
online learning
online optimization
gradient descent
statistical learning theory
PAC–Bayes theory
deep learning
generalisation bounds
Bayesian sampling
Monte Carlo integration
PAC-Bayes theory
no free lunch theorems
sequential learning
principal curves
data streams
regret bounds
greedy algorithm
sleeping experts
entropy
robustness
statistical mechanics
complex systems
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910576874903321
Alquier Pierre  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Condensed-Matter-Principia Based Information & Statistical Measures : From Classical to Quantum
Condensed-Matter-Principia Based Information & Statistical Measures : From Classical to Quantum
Autore Gadomski Adam
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (166 p.)
Soggetto topico Research & information: general
Soggetto non controllato entropy
second law
thermodynamics
Shannon measure of information
information theory
surface plasmons
fractals
quantum plasmonics
beyond dipole
entanglement
electromagnetically induced transparency
cross-Kerr nonlinearity
Gazeau–Klauder coherent states
Helstrom bound
chemical computing
oscillatory reaction
genetic optimization
classification problem
interacting oscillators
Flory–De Gennes exponent
conformation of protein
albumin
non-gaussian chain
non-isothermal characteristics
Fisher’s test
Kullback–Leibler divergence
network
flow
channel
probability distribution
Shannon information measure
cross-entropy
drones
swarms
robustness
information
classical vs. quantum system
condensed matter
soft matter
complex systems
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Condensed-Matter-Principia Based Information & Statistical Measures
Record Nr. UNINA-9910557512803321
Gadomski Adam  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Uncertainty Quantification Techniques in Statistics
Uncertainty Quantification Techniques in Statistics
Autore Kim Jong-Min
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (128 p.)
Soggetto non controllato Kullback–Leibler divergence
geometric distribution
accuracy
AUROC
allele read counts
mixture model
low-coverage
entropy
gene-expression data
SCAD
data envelopment analysis
LASSO
high-throughput
sandwich variance estimator
adaptive lasso
semiparametric regression
?1 lasso
Laplacian matrix
elastic net
feature selection
sea surface temperature
gene expression data
Skew-Reflected-Gompertz distribution
lasso
next-generation sequencing
BH-FDR
stochastic frontier model
?2 ridge
geometric mean
resampling
Gompertz distribution
adapative lasso
group efficiency comparison
sensitive attribute
MCP
probability proportional to size (PPS) sampling
randomization device
SIS
Yennum et al.’s model
ensembles
ISBN 3-03928-547-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404091103321
Kim Jong-Min  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui