top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Research Directions in Symplectic and Contact Geometry and Topology / Bahar Acu ... [et al.] editors
Research Directions in Symplectic and Contact Geometry and Topology / Bahar Acu ... [et al.] editors
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xvii, 329 p. : ill. ; 24 cm
Soggetto topico 53-XX - Differential geometry [MSC 2020]
53Dxx - Symplectic geometry, contact geometry [MSC 2020]
00B25 - Proceedings of conferences of miscellaneous specific interest [MSC 2020]
57R17 - Symplectic and contact topology in high or arbitrary dimension [MSC 2020]
57K33 - Contact structures in 3 dimensions [MSC 2020]
Soggetto non controllato Derived categories
Differentiable manifolds
Differential topology
Hirzebruch surfaces
Khovanov homology
Lagrangian cobordisms
Legendrian submanifolds
Polyfold theory
Pseudoholomorphic curves
Triangulated categories
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0275255
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Research Directions in Symplectic and Contact Geometry and Topology / Bahar Acu ... [et al.] editors
Research Directions in Symplectic and Contact Geometry and Topology / Bahar Acu ... [et al.] editors
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xvii, 329 p. : ill. ; 24 cm
Soggetto topico 00B25 - Proceedings of conferences of miscellaneous specific interest [MSC 2020]
53-XX - Differential geometry [MSC 2020]
53Dxx - Symplectic geometry, contact geometry [MSC 2020]
57K33 - Contact structures in 3 dimensions [MSC 2020]
57R17 - Symplectic and contact topology in high or arbitrary dimension [MSC 2020]
Soggetto non controllato Derived categories
Differentiable manifolds
Differential topology
Hirzebruch surfaces
Khovanov homology
Lagrangian cobordisms
Legendrian submanifolds
Polyfold theory
Pseudoholomorphic curves
Triangulated categories
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00275255
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Symmetry in Applied Mathematics
Symmetry in Applied Mathematics
Autore Bolboacă Sorana D
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (244 p.)
Soggetto topico History of engineering & technology
Soggetto non controllato Khovanov homology
braid link
Jones polynomial
drone deployment
drone port
traveling salesman
facility location problem
molecular arrays
constrained optimization
equivariant bifurcation theory
generalized Lane–Emden systems
Noether-like operator
conservation laws
barycentric coordinate system
coordinate system
hexagonal grid
triangular grid
tri-hexagonal grid
transformations
test for outliers
order statistics
extreme values
confidence intervals
Monte-Carlo simulation
nonlinear equations
systems
derivative-free methods
fast algorithms
computational efficiency
neutrosophic soft sets
inconsistent information
prospect theory
stochastic multi-criteria group decision making
lie symmetries
invariants
shallow water
similarity solutions
optimal system
equal volume projection
hierarchical grid
iterative function
multiple root
composite method
derivative-free method
optimal convergence
full-scale fire experiment
compartment fire
permutation entropy
two length permutation entropy
time series analysis
parametric Jensen-Shannon statistical complexity
symmetric duality
alpha-power skew-t distribution
skew-t distribution
power-t distribution
asymmetry
Fisher information matrix
maximum likelihood estimation
iteration
fixed points
fractals
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557566703321
Bolboacă Sorana D  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui