top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Research Directions in Symplectic and Contact Geometry and Topology / Bahar Acu ... [et al.] editors
Research Directions in Symplectic and Contact Geometry and Topology / Bahar Acu ... [et al.] editors
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xvii, 329 p. : ill. ; 24 cm
Soggetto topico 53-XX - Differential geometry [MSC 2020]
53Dxx - Symplectic geometry, contact geometry [MSC 2020]
00B25 - Proceedings of conferences of miscellaneous specific interest [MSC 2020]
57R17 - Symplectic and contact topology in high or arbitrary dimension [MSC 2020]
57K33 - Contact structures in 3 dimensions [MSC 2020]
Soggetto non controllato Derived categories
Differentiable manifolds
Differential topology
Hirzebruch surfaces
Khovanov homology
Lagrangian cobordisms
Legendrian submanifolds
Polyfold theory
Pseudoholomorphic curves
Triangulated categories
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0275255
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Research Directions in Symplectic and Contact Geometry and Topology / Bahar Acu ... [et al.] editors
Research Directions in Symplectic and Contact Geometry and Topology / Bahar Acu ... [et al.] editors
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xvii, 329 p. : ill. ; 24 cm
Soggetto topico 00B25 - Proceedings of conferences of miscellaneous specific interest [MSC 2020]
53-XX - Differential geometry [MSC 2020]
53Dxx - Symplectic geometry, contact geometry [MSC 2020]
57K33 - Contact structures in 3 dimensions [MSC 2020]
57R17 - Symplectic and contact topology in high or arbitrary dimension [MSC 2020]
Soggetto non controllato Derived categories
Differentiable manifolds
Differential topology
Hirzebruch surfaces
Khovanov homology
Lagrangian cobordisms
Legendrian submanifolds
Polyfold theory
Pseudoholomorphic curves
Triangulated categories
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00275255
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Symmetry in Applied Mathematics
Symmetry in Applied Mathematics
Autore Bolboacă Sorana D
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (244 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato alpha-power skew-t distribution
asymmetry
barycentric coordinate system
braid link
compartment fire
composite method
computational efficiency
confidence intervals
conservation laws
constrained optimization
coordinate system
derivative-free method
derivative-free methods
drone deployment
drone port
equal volume projection
equivariant bifurcation theory
extreme values
facility location problem
fast algorithms
Fisher information matrix
fixed points
fractals
full-scale fire experiment
generalized Lane-Emden systems
hexagonal grid
hierarchical grid
inconsistent information
invariants
iteration
iterative function
Jones polynomial
Khovanov homology
lie symmetries
maximum likelihood estimation
molecular arrays
Monte-Carlo simulation
multiple root
neutrosophic soft sets
Noether-like operator
nonlinear equations
optimal convergence
optimal system
order statistics
parametric Jensen-Shannon statistical complexity
permutation entropy
power-t distribution
prospect theory
shallow water
similarity solutions
skew-t distribution
stochastic multi-criteria group decision making
symmetric duality
systems
test for outliers
time series analysis
transformations
traveling salesman
tri-hexagonal grid
triangular grid
two length permutation entropy
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557566703321
Bolboacă Sorana D  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui