top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Coherence : In Signal Processing and Machine Learning / David Ramírez, Ignacio Santamaría, Louis Scharf
Coherence : In Signal Processing and Machine Learning / David Ramírez, Ignacio Santamaría, Louis Scharf
Autore Ramírez, David
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica xxi, 487 p. : ill. ; 24 cm
Altri autori (Persone) Santamaría, Ignacio
Scharf, Louis
Soggetto non controllato Beamforming and spectrum analysis
Canonical and multiset correlation analysis
Coherence in compressed sensing
Coherence in science and engineering
Coherence in signal processing
Correlation and partial correlation analysis
Hypothesis testing for covariance structure
Kernel methods
Least squares and its applications
Matched and adaptive subspace detectors
Matrix optimization
Multichannel coherence
Multichannel detection of spacetime signals
Multidimensional Scaling
Normal and matrix distribution theory
Passive and active detection
Performance bounds and uncertainty quantification
Principal component analysis
Subspace averaging and its applications
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0276976
Ramírez, David  
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Coherence : In Signal Processing and Machine Learning / David Ramírez, Ignacio Santamaría, Louis Scharf
Coherence : In Signal Processing and Machine Learning / David Ramírez, Ignacio Santamaría, Louis Scharf
Autore Ramírez, David
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica xxi, 487 p. : ill. ; 24 cm
Altri autori (Persone) Santamaría, Ignacio
Scharf, Louis
Soggetto topico 62-XX - Statistics [MSC 2020]
68-XX - Computer science [MSC 2020]
94-XX - Information and communication theory, circuits [MSC 2020]
Soggetto non controllato Beamforming and spectrum analysis
Canonical and multiset correlation analysis
Coherence in compressed sensing
Coherence in science and engineering
Coherence in signal processing
Correlation and partial correlation analysis
Hypothesis testing for covariance structure
Kernel methods
Least squares and its applications
Matched and adaptive subspace detectors
Matrix optimization
Multichannel coherence
Multichannel detection of spacetime signals
Multidimensional Scaling
Normal and matrix distribution theory
Passive and active detection
Performance bounds and uncertainty quantification
Principal component analysis
Subspace averaging and its applications
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00276976
Ramírez, David  
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Fundamentals of Data Analytics : With a View to Machine Learning / Rudolf Mathar ... [et al.]
Fundamentals of Data Analytics : With a View to Machine Learning / Rudolf Mathar ... [et al.]
Pubbl/distr/stampa Cham, : Springer, 2020
Descrizione fisica xi, 127 p. : ill. ; 24 cm
Soggetto topico 62-XX - Statistics [MSC 2020]
68T05 - Learning and adaptive systems in artificial intelligence [MSC 2020]
62H25 - Factor analysis and principal components; correspondence analysis [MSC 2020]
62R07 - Statistical aspects of big data and data science [MSC 2020]
Soggetto non controllato Artificial Intelligence
Classification
Clustering
Data science
Diffusion maps
Dimensionality reduction
Isomap
Kernel methods
Machine learning
MapReduce
Markov decision processes
Matrix optimization and approximation
Multidimensional Scaling
Principal component analysis
Spectral clustering
Supervised machine learning
Support Vector Machines
Unsupervised machine learning
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0249280
Cham, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Fundamentals of Data Analytics : With a View to Machine Learning / Rudolf Mathar ... [et al.]
Fundamentals of Data Analytics : With a View to Machine Learning / Rudolf Mathar ... [et al.]
Pubbl/distr/stampa Cham, : Springer, 2020
Descrizione fisica xi, 127 p. : ill. ; 24 cm
Soggetto topico 62-XX - Statistics [MSC 2020]
62H25 - Factor analysis and principal components; correspondence analysis [MSC 2020]
62R07 - Statistical aspects of big data and data science [MSC 2020]
68T05 - Learning and adaptive systems in artificial intelligence [MSC 2020]
Soggetto non controllato Artificial Intelligence
Classification
Clustering
Data science
Diffusion maps
Dimensionality reduction
Isomap
Kernel methods
Machine learning
MapReduce
Markov decision processes
Matrix optimization and approximation
Multidimensional Scaling
Principal component analysis
Spectral clustering
Supervised machine learning
Support Vector Machines
Unsupervised machine learning
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00249280
Cham, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Kernel Mode Decomposition and the Programming of Kernels / Houman Owhadi, Clint Scovel, Gene Ryan Yoo
Kernel Mode Decomposition and the Programming of Kernels / Houman Owhadi, Clint Scovel, Gene Ryan Yoo
Autore Owhadi, Houman
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica x, 118 p. : ill. ; 24 cm
Altri autori (Persone) Scovel, Clint
Yoo, Gene Ryan
Soggetto topico 68T10 - Pattern recognition, speech recognition [MSC 2020]
62J02 - General nonlinear regression [MSC 2020]
62-XX - Statistics [MSC 2020]
62G07 - Density estimation [MSC 2020]
62J12 - Generalized linear models (logistic models) [MSC 2020]
62R07 - Statistical aspects of big data and data science [MSC 2020]
62H30 - Classification and discrimination; cluster analysis (statistical aspects) [MSC 2020]
62G08 - Nonparametric regression and quantile regression [MSC 2020]
68T09 - Computational aspects of data analysis and big data [MSC 2020]
Soggetto non controllato Additive models
Empirical mode decomposition
Gaussian process regression
Kernel methods
Time-frequency decomposition
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0274859
Owhadi, Houman  
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Kernel Mode Decomposition and the Programming of Kernels / Houman Owhadi, Clint Scovel, Gene Ryan Yoo
Kernel Mode Decomposition and the Programming of Kernels / Houman Owhadi, Clint Scovel, Gene Ryan Yoo
Autore Owhadi, Houman
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica x, 118 p. : ill. ; 24 cm
Altri autori (Persone) Scovel, Clint
Yoo, Gene Ryan
Soggetto topico 62-XX - Statistics [MSC 2020]
62G07 - Density estimation [MSC 2020]
62G08 - Nonparametric regression and quantile regression [MSC 2020]
62H30 - Classification and discrimination; cluster analysis (statistical aspects) [MSC 2020]
62J02 - General nonlinear regression [MSC 2020]
62J12 - Generalized linear models (logistic models) [MSC 2020]
62R07 - Statistical aspects of big data and data science [MSC 2020]
68T09 - Computational aspects of data analysis and big data [MSC 2020]
68T10 - Pattern recognition, speech recognition [MSC 2020]
Soggetto non controllato Additive models
Empirical mode decomposition
Gaussian process regression
Kernel methods
Time-frequency decomposition
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00274859
Owhadi, Houman  
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Machine Learning Paradigms : Advances in Deep Learning-based Technological Applications / George A. Tsihrintzis, Lakhmi C. Jain editors
Machine Learning Paradigms : Advances in Deep Learning-based Technological Applications / George A. Tsihrintzis, Lakhmi C. Jain editors
Pubbl/distr/stampa Cham, : Springer, 2020
Descrizione fisica xi, 430 p. : ill. ; 24 cm
Soggetto topico 68Txx - Artificial intelligence [MSC 2020]
68T05 - Learning and adaptive systems in artificial intelligence [MSC 2020]
Soggetto non controllato Bioinformatics
Biosciences
Computer Games
Computer vision
Deep Learning Networks
Evolutionary Approaches
Image and Speech Processing
Kernel methods
Natural Language Processing
Neural networks
Reinforcement
Relational Learning
Semi-supervised
Supervised
Unsupervised
Virtual Environments
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0249412
Cham, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Machine Learning Paradigms : Advances in Deep Learning-based Technological Applications / George A. Tsihrintzis, Lakhmi C. Jain editors
Machine Learning Paradigms : Advances in Deep Learning-based Technological Applications / George A. Tsihrintzis, Lakhmi C. Jain editors
Pubbl/distr/stampa Cham, : Springer, 2020
Descrizione fisica xi, 430 p. : ill. ; 24 cm
Soggetto topico 68T05 - Learning and adaptive systems in artificial intelligence [MSC 2020]
68Txx - Artificial intelligence [MSC 2020]
Soggetto non controllato Bioinformatics
Biosciences
Computer Games
Computer vision
Deep Learning Networks
Evolutionary Approaches
Image and Speech Processing
Kernel methods
Natural language
Neural networks
Reinforcement
Relational Learning
Semi-supervised
Supervised
Unsupervised
Virtual Environments
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00249412
Cham, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Machine Learning with Quantum Computers / Maria Schuld, Francesco Petruccione
Machine Learning with Quantum Computers / Maria Schuld, Francesco Petruccione
Autore Schuld, Maria
Edizione [2. ed]
Pubbl/distr/stampa Cham, : Springer, 2021
Descrizione fisica xiv, 312 p. : ill. ; 24 cm
Altri autori (Persone) Petruccione, Francesco
Soggetto topico 68Q12 - Quantum algorithms and complexity in the theory of computing [MSC 2020]
68T05 - Learning and adaptive systems in artificial intelligence [MSC 2020]
81-XX - Quantum theory [MSC 2020]
81P68 - Quantum computation [MSC 2020]
82C32 - Neural nets applied to problems in time-dependent statistical mechanics [MSC 2020]
Soggetto non controllato Artificial neural network
Deep Belief Network
Deutsch-Josza algorithm
Grover search
Hidden Markov models
Hopfield Model
Kernel methods
Qsample encoding
Quantum blas
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00282609
Schuld, Maria  
Cham, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Minimum Divergence Methods in Statistical Machine Learning : From an Information Geometric Viewpoint / Shinto Eguchi, Osamu Komori
Minimum Divergence Methods in Statistical Machine Learning : From an Information Geometric Viewpoint / Shinto Eguchi, Osamu Komori
Autore Eguchi, Shinto
Pubbl/distr/stampa Tokyo, : Springer, 2022
Descrizione fisica x, 221 p. : ill. ; 24 cm
Altri autori (Persone) Komori, Osamu
Soggetto non controllato Boosting
Independent component analysis
Information Geometry
Kernel methods
Machine learning
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00278247
Eguchi, Shinto  
Tokyo, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui