top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Deep Learning Applications with Practical Measured Results in Electronics Industries
Deep Learning Applications with Practical Measured Results in Electronics Industries
Autore Kung Hsu-Yang
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (272 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato A*
background model
binary classification
CNN
compressed sensing
computational intelligence
content reconstruction
convolutional network
data fusion
data partition
deep learning
digital shearography
discrete wavelet transform
dot grid target
eye-tracking device
faster region-based CNN
forecasting
foreign object
GA
gated recurrent unit
generative adversarial network
geometric errors
geometric errors correction
GSA-BP
human computer interaction
humidity sensor
hyperspectral image classification
image compression
image inpainting
image restoration
imaging confocal microscope
Imaging Confocal Microscope
information measure
instance segmentation
intelligent surveillance
intelligent tire manufacturing
K-means clustering
kinematic modelling
lateral stage errors
Least Squares method
long short-term memory
machine learning
MCM uncertainty evaluation
multiple constraints
multiple linear regression
multivariate temporal convolutional network
multivariate time series forecasting
neighborhood noise reduction
network layer contribution
neural audio caption
neural networks
neuro-fuzzy systems
nonlinear optimization
offshore wind
optimization techniques
oral evaluation
recommender system
reinforcement learning
residual networks
rigid body kinematics
saliency information
smart grid
supervised learning
tire bubble defects
tire quality assessment
trajectory planning
transfer learning
UAV
underground mines
unmanned aerial vehicle
unsupervised learning
update mechanism
update occasion
visual tracking
ISBN 3-03928-864-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404080403321
Kung Hsu-Yang  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Information Theory and Machine Learning
Information Theory and Machine Learning
Autore Zheng Lizhong
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (254 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato supervised classification
independent and non-identically distributed features
analytical error probability
empirical risk
generalization error
K-means clustering
model compression
population risk
rate distortion theory
vector quantization
overfitting
information criteria
entropy
model-based clustering
merging mixture components
component overlap
interpretability
time series prediction
finite state machines
hidden Markov models
recurrent neural networks
reservoir computers
long short-term memory
deep neural network
information theory
local information geometry
feature extraction
spiking neural network
meta-learning
information theoretic learning
minimum error entropy
artificial general intelligence
closed-loop transcription
linear discriminative representation
rate reduction
minimax game
fairness
HGR maximal correlation
independence criterion
separation criterion
pattern dictionary
atypicality
Lempel–Ziv algorithm
lossless compression
anomaly detection
information-theoretic bounds
distribution and federated learning
ISBN 3-0365-5308-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619463403321
Zheng Lizhong  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui