Vai al contenuto principale della pagina

Energy Data Analytics for Smart Meter Data



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Reinhardt Andreas Visualizza persona
Titolo: Energy Data Analytics for Smart Meter Data Visualizza cluster
Pubblicazione: Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica: 1 online resource (346 p.)
Soggetto topico: Technology: general issues
Soggetto non controllato: activation current
ambient influences
appliance load signatures
appliance recognition
attention mechanism
convolutional neural network
Convolutional Neural Network
data annotation
data privacy
data-driven approaches
deep learning
deep neural network
deep neural networks
device classification accuracy
distance similarity matrix
electric load simulation
electric vehicle
electrical energy
electricity theft detection
energy consumption
energy data analytics
energy data processing
energy disaggregation
ethics
exponential distribution
fryze power theory
Gaussian mixture models
GDPR
K-means cluster
load disaggregation
load scheduling
machine learning
mathematical modeling
multi-label learning
n/a
NILM
NILM datasets
non-intrusive load monitoring
Non-intrusive Load Monitoring
Non-Intrusive Load Monitoring (NILM)
nontechnical losses
Poisson distribution
power consumption data
power signature
pulse generator
random forest
real-time
review
satisfaction
semi-automatic labeling
Shapley Value
signature
simulation
smart energy system
smart grid
smart grids
smart meter
smart meter data
smart metering
smart meters
smart power grids
solar photovoltaics
synthetic data
synthetic minority oversampling technique
text convolutional neural networks (TextCNN)
time-series classification
transient load signature
transients
user-centric applications of energy data
V-I trajectory
Persona (resp. second.): PereiraLucas
ReinhardtAndreas
Sommario/riassunto: The principal advantage of smart electricity meters is their ability to transfer digitized electricity consumption data to remote processing systems. The data collected by these devices make the realization of many novel use cases possible, providing benefits to electricity providers and customers alike. This book includes 14 research articles that explore and exploit the information content of smart meter data, and provides insights into the realization of new digital solutions and services that support the transition towards a sustainable energy system. This volume has been edited by Andreas Reinhardt, head of the Energy Informatics research group at Technische Universität Clausthal, Germany, and Lucas Pereira, research fellow at Técnico Lisboa, Portugal.
Titolo autorizzato: Energy Data Analytics for Smart Meter Data  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910557645803321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui