Etale Homotopy of Simplicial Schemes. (AM-104), Volume 104 / / Eric M. Friedlander |
Autore | Friedlander Eric M. |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (193 pages) |
Disciplina | 514/.24 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Homotopy theory
Schemes (Algebraic geometry) Homology theory |
Soggetto non controllato |
Abelian group
Adams operation Adjoint functors Alexander Grothendieck Algebraic K-theory Algebraic closure Algebraic geometry Algebraic group Algebraic number theory Algebraic structure Algebraic topology (object) Algebraic topology Algebraic variety Algebraically closed field Automorphism Base change Cap product Cartesian product Closed immersion Codimension Coefficient Cohomology Comparison theorem Complex number Complex vector bundle Connected component (graph theory) Connected space Coprime integers Corollary Covering space Derived functor Dimension (vector space) Disjoint union Embedding Existence theorem Ext functor Exterior algebra Fiber bundle Fibration Finite field Finite group Free group Functor Fundamental group Galois cohomology Galois extension Geometry Grothendieck topology Homogeneous space Homological algebra Homology (mathematics) Homomorphism Homotopy category Homotopy group Homotopy Integral domain Intersection (set theory) Inverse limit Inverse system K-theory Leray spectral sequence Lie group Local ring Mapping cylinder Natural number Natural transformation Neighbourhood (mathematics) Newton polynomial Noetherian ring Open set Opposite category Pointed set Presheaf (category theory) Reductive group Regular local ring Relative homology Residue field Riemann surface Root of unity Serre spectral sequence Shape theory (mathematics) Sheaf (mathematics) Sheaf cohomology Sheaf of spectra Simplex Simplicial set Special case Spectral sequence Surjective function Theorem Topological K-theory Topological space Topology Tubular neighborhood Vector bundle Weak equivalence (homotopy theory) Weil conjectures Weyl group Witt vector Zariski topology |
ISBN | 1-4008-8149-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- INTRODUCTION -- 1. ETALE SITE OF A SIMPLICIAL SCHEME -- 2. SHEAVES AND COHOMOLOGY -- 3. COHOMOLOGY VIA HYPERCOVERINGS -- 4. ETALE TOPOLOGICAL TYPE -- 5. HOMOTOPY INVARIANTS -- 6. WEAK EQUIVALENCES, COMPLETIONS, AND HOMOTOPY LIMITS -- 7. FINITENESS AND HOMOLOGY -- 8. COMPARISON OF HOMOTOPY TYPES -- 9. APPLICATIONS TO TOPOLOGY -- 10. COMPARISON OF GEOMETRIC AND HOMOTOPY THEORETIC FIBRES -- 11. APPLICATIONS TO GEOMETRY -- 12. APPLICATIONS TO FINITE CHE VALLEY GROUPS -- 13. FUNCTION COMPLEXES -- 14. RELATIVE COHOMOLOGY -- 15. TUBULAR NEIGHBORHOODS -- 16. GENERALIZED COHOMOLOGY -- 17. POINCARÉ DUALITY AND LOCALLY COMPACT HOMOLOGY -- REFERENCES -- INDEX -- Backmatter |
Record Nr. | UNINA-9910154744803321 |
Friedlander Eric M. | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Euler systems / / by Karl Rubin |
Autore | Rubin Karl |
Pubbl/distr/stampa | Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 |
Descrizione fisica | 1 online resource (241 p.) |
Disciplina | 512/.74 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Algebraic number theory
p-adic numbers |
Soggetto non controllato |
Abelian extension
Abelian variety Absolute Galois group Algebraic closure Barry Mazur Big O notation Birch and Swinnerton-Dyer conjecture Cardinality Class field theory Coefficient Cohomology Complex multiplication Conjecture Corollary Cyclotomic field Dimension (vector space) Divisibility rule Eigenvalues and eigenvectors Elliptic curve Error term Euler product Euler system Exact sequence Existential quantification Field of fractions Finite set Functional equation Galois cohomology Galois group Galois module Gauss sum Global field Heegner point Ideal class group Integer Inverse limit Inverse system Karl Rubin Local field Mathematical induction Maximal ideal Modular curve Modular elliptic curve Natural number Orthogonality P-adic number Pairing Principal ideal R-factor (crystallography) Ralph Greenberg Remainder Residue field Ring of integers Scientific notation Selmer group Subgroup Tate module Taylor series Tensor product Theorem Upper and lower bounds Victor Kolyvagin |
ISBN |
0-691-05075-9
1-4008-6520-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index |
Record Nr. | UNINA-9910786510103321 |
Rubin Karl | ||
Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Euler systems / / by Karl Rubin |
Autore | Rubin Karl |
Pubbl/distr/stampa | Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 |
Descrizione fisica | 1 online resource (241 p.) |
Disciplina | 512/.74 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Algebraic number theory
p-adic numbers |
Soggetto non controllato |
Abelian extension
Abelian variety Absolute Galois group Algebraic closure Barry Mazur Big O notation Birch and Swinnerton-Dyer conjecture Cardinality Class field theory Coefficient Cohomology Complex multiplication Conjecture Corollary Cyclotomic field Dimension (vector space) Divisibility rule Eigenvalues and eigenvectors Elliptic curve Error term Euler product Euler system Exact sequence Existential quantification Field of fractions Finite set Functional equation Galois cohomology Galois group Galois module Gauss sum Global field Heegner point Ideal class group Integer Inverse limit Inverse system Karl Rubin Local field Mathematical induction Maximal ideal Modular curve Modular elliptic curve Natural number Orthogonality P-adic number Pairing Principal ideal R-factor (crystallography) Ralph Greenberg Remainder Residue field Ring of integers Scientific notation Selmer group Subgroup Tate module Taylor series Tensor product Theorem Upper and lower bounds Victor Kolyvagin |
ISBN |
0-691-05075-9
1-4008-6520-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index |
Record Nr. | UNINA-9910816804403321 |
Rubin Karl | ||
Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151), Volume 151 / / Richard Taylor, Michael Harris |
Autore | Harris Michael |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2001] |
Descrizione fisica | 1 online resource (288 p.) |
Disciplina | 516.3/5 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Mathematics
Shimura varieties MATHEMATICS / Number Theory |
Soggetto non controllato |
Abelian variety
Absolute value Algebraic group Algebraically closed field Artinian Automorphic form Base change Bijection Canonical map Codimension Coefficient Cohomology Compactification (mathematics) Conjecture Corollary Dimension (vector space) Dimension Direct limit Division algebra Eigenvalues and eigenvectors Elliptic curve Embedding Equivalence class Equivalence of categories Existence theorem Field of fractions Finite field Function field Functor Galois cohomology Galois group Generic point Geometry Hasse invariant Infinitesimal character Integer Inverse system Isomorphism class Lie algebra Local class field theory Maximal torus Modular curve Moduli space Monic polynomial P-adic number Prime number Profinite group Residue field Ring of integers Separable extension Sheaf (mathematics) Shimura variety Simple group Special case Spectral sequence Square root Subset Tate module Theorem Transcendence degree Unitary group Valuative criterion Variable (mathematics) Vector space Weil group Weil pairing Zariski topology |
ISBN | 1-4008-3720-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Introduction -- Acknowledgements -- Chapter I. Preliminaries -- Chapter II. Barsotti-Tate groups -- Chapter III. Some simple Shimura varieties -- Chapter IV. Igusa varieties -- Chapter V. Counting Points -- Chapter VI. Automorphic forms -- Chapter VII. Applications -- Appendix. A result on vanishing cycles / Berkovich, V. G. -- Bibliography -- Index |
Record Nr. | UNINA-9910791960703321 |
Harris Michael | ||
Princeton, NJ : , : Princeton University Press, , [2001] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151), Volume 151 / / Richard Taylor, Michael Harris |
Autore | Harris Michael |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2001] |
Descrizione fisica | 1 online resource (288 p.) |
Disciplina | 516.3/5 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Mathematics
Shimura varieties MATHEMATICS / Number Theory |
Soggetto non controllato |
Abelian variety
Absolute value Algebraic group Algebraically closed field Artinian Automorphic form Base change Bijection Canonical map Codimension Coefficient Cohomology Compactification (mathematics) Conjecture Corollary Dimension (vector space) Dimension Direct limit Division algebra Eigenvalues and eigenvectors Elliptic curve Embedding Equivalence class Equivalence of categories Existence theorem Field of fractions Finite field Function field Functor Galois cohomology Galois group Generic point Geometry Hasse invariant Infinitesimal character Integer Inverse system Isomorphism class Lie algebra Local class field theory Maximal torus Modular curve Moduli space Monic polynomial P-adic number Prime number Profinite group Residue field Ring of integers Separable extension Sheaf (mathematics) Shimura variety Simple group Special case Spectral sequence Square root Subset Tate module Theorem Transcendence degree Unitary group Valuative criterion Variable (mathematics) Vector space Weil group Weil pairing Zariski topology |
ISBN | 1-4008-3720-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Introduction -- Acknowledgements -- Chapter I. Preliminaries -- Chapter II. Barsotti-Tate groups -- Chapter III. Some simple Shimura varieties -- Chapter IV. Igusa varieties -- Chapter V. Counting Points -- Chapter VI. Automorphic forms -- Chapter VII. Applications -- Appendix. A result on vanishing cycles / Berkovich, V. G. -- Bibliography -- Index |
Record Nr. | UNINA-9910814893103321 |
Harris Michael | ||
Princeton, NJ : , : Princeton University Press, , [2001] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|