Integral points on algebraic varieties : an introduction to diophantine geometry / Pietro Corvaja
| Integral points on algebraic varieties : an introduction to diophantine geometry / Pietro Corvaja |
| Autore | Corvaja, Pietro |
| Pubbl/distr/stampa | [Singapore], : Hindustan book agency, : Springer, 2016 |
| Descrizione fisica | IX, 75 p. ; 24 cm |
| Soggetto topico |
14-XX - Algebraic geometry [MSC 2020]
11G35 - Varieties over global fields [MSC 2020] 14G25 - Global ground fields [MSC 2020] 14G05 - Rational points [MSC 2020] 11J87 - Schmidt Subspace Theorem and applications [MSC 2020] |
| Soggetto non controllato |
Diophantine approximation
Hyperelliptic curves Integral points on surfaces Siegel's theorem Thue's equation Universal Hilbert Sequences |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0114889 |
Corvaja, Pietro
|
||
| [Singapore], : Hindustan book agency, : Springer, 2016 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Integral points on algebraic varieties : an introduction to diophantine geometry / Pietro Corvaja
| Integral points on algebraic varieties : an introduction to diophantine geometry / Pietro Corvaja |
| Autore | Corvaja, Pietro |
| Pubbl/distr/stampa | [Singapore], : Hindustan book agency, : Springer, 2016 |
| Descrizione fisica | IX, 75 p. ; 24 cm |
| Soggetto topico |
11G35 - Varieties over global fields [MSC 2020]
11J87 - Schmidt Subspace Theorem and applications [MSC 2020] 14-XX - Algebraic geometry [MSC 2020] 14G05 - Rational points [MSC 2020] 14G25 - Global ground fields [MSC 2020] |
| Soggetto non controllato |
Diophantine approximation
Hyperelliptic curves Integral points on surfaces Siegel's theorem Thue's equation Universal Hilbert Sequences |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00114889 |
Corvaja, Pietro
|
||
| [Singapore], : Hindustan book agency, : Springer, 2016 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||