The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151), Volume 151 / / Richard Taylor, Michael Harris |
Autore | Harris Michael |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2001] |
Descrizione fisica | 1 online resource (288 p.) |
Disciplina | 516.3/5 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Mathematics
Shimura varieties MATHEMATICS / Number Theory |
Soggetto non controllato |
Abelian variety
Absolute value Algebraic group Algebraically closed field Artinian Automorphic form Base change Bijection Canonical map Codimension Coefficient Cohomology Compactification (mathematics) Conjecture Corollary Dimension (vector space) Dimension Direct limit Division algebra Eigenvalues and eigenvectors Elliptic curve Embedding Equivalence class Equivalence of categories Existence theorem Field of fractions Finite field Function field Functor Galois cohomology Galois group Generic point Geometry Hasse invariant Infinitesimal character Integer Inverse system Isomorphism class Lie algebra Local class field theory Maximal torus Modular curve Moduli space Monic polynomial P-adic number Prime number Profinite group Residue field Ring of integers Separable extension Sheaf (mathematics) Shimura variety Simple group Special case Spectral sequence Square root Subset Tate module Theorem Transcendence degree Unitary group Valuative criterion Variable (mathematics) Vector space Weil group Weil pairing Zariski topology |
ISBN | 1-4008-3720-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Introduction -- Acknowledgements -- Chapter I. Preliminaries -- Chapter II. Barsotti-Tate groups -- Chapter III. Some simple Shimura varieties -- Chapter IV. Igusa varieties -- Chapter V. Counting Points -- Chapter VI. Automorphic forms -- Chapter VII. Applications -- Appendix. A result on vanishing cycles / Berkovich, V. G. -- Bibliography -- Index |
Record Nr. | UNINA-9910791960703321 |
Harris Michael | ||
Princeton, NJ : , : Princeton University Press, , [2001] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151), Volume 151 / / Richard Taylor, Michael Harris |
Autore | Harris Michael |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2001] |
Descrizione fisica | 1 online resource (288 p.) |
Disciplina | 516.3/5 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Mathematics
Shimura varieties MATHEMATICS / Number Theory |
Soggetto non controllato |
Abelian variety
Absolute value Algebraic group Algebraically closed field Artinian Automorphic form Base change Bijection Canonical map Codimension Coefficient Cohomology Compactification (mathematics) Conjecture Corollary Dimension (vector space) Dimension Direct limit Division algebra Eigenvalues and eigenvectors Elliptic curve Embedding Equivalence class Equivalence of categories Existence theorem Field of fractions Finite field Function field Functor Galois cohomology Galois group Generic point Geometry Hasse invariant Infinitesimal character Integer Inverse system Isomorphism class Lie algebra Local class field theory Maximal torus Modular curve Moduli space Monic polynomial P-adic number Prime number Profinite group Residue field Ring of integers Separable extension Sheaf (mathematics) Shimura variety Simple group Special case Spectral sequence Square root Subset Tate module Theorem Transcendence degree Unitary group Valuative criterion Variable (mathematics) Vector space Weil group Weil pairing Zariski topology |
ISBN | 1-4008-3720-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Introduction -- Acknowledgements -- Chapter I. Preliminaries -- Chapter II. Barsotti-Tate groups -- Chapter III. Some simple Shimura varieties -- Chapter IV. Igusa varieties -- Chapter V. Counting Points -- Chapter VI. Automorphic forms -- Chapter VII. Applications -- Appendix. A result on vanishing cycles / Berkovich, V. G. -- Bibliography -- Index |
Record Nr. | UNINA-9910814893103321 |
Harris Michael | ||
Princeton, NJ : , : Princeton University Press, , [2001] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula. (AM-120), Volume 120 / / Laurent Clozel, James Arthur |
Autore | Arthur James |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (248 pages) : illustrations |
Disciplina | 512/.2 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Representations of groups
Trace formulas Automorphic forms |
Soggetto non controllato |
0E
Addition Admissible representation Algebraic group Algebraic number field Approximation Archimedean property Automorphic form Automorphism Base change Big O notation Binomial coefficient Canonical map Cartan subalgebra Cartan subgroup Central simple algebra Characteristic polynomial Closure (mathematics) Combination Computation Conjecture Conjugacy class Connected component (graph theory) Continuous function Contradiction Corollary Counting Coxeter element Cusp form Cyclic permutation Dense set Density theorem Determinant Diagram (category theory) Discrete series representation Discrete spectrum Division algebra Eigenvalues and eigenvectors Eisenstein series Exact sequence Existential quantification Field extension Finite group Finite set Fourier transform Functor Fundamental lemma (Langlands program) Galois extension Galois group Global field Grothendieck group Group representation Haar measure Harmonic analysis Hecke algebra Hilbert's Theorem 90 Identity component Induced representation Infinite product Infinitesimal character Invariant measure Irreducibility (mathematics) Irreducible representation L-function Langlands classification Laurent series Lie algebra Lie group Linear algebraic group Local field Mathematical induction Maximal compact subgroup Multiplicative group Nilpotent group Orbital integral P-adic number Paley–Wiener theorem Parameter Parametrization Permutation Poisson summation formula Real number Reciprocal lattice Reductive group Root of unity Scientific notation Semidirect product Special case Spherical harmonics Subgroup Subset Summation Support (mathematics) Tensor product Theorem Trace formula Unitary representation Weil group Weyl group Zero of a function |
ISBN | 1-4008-8240-0 |
Classificazione | SK 240 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Introduction -- Chapter 1. Local Results -- Chapter 2. The Global Comparison -- Chapter 3. Base Change -- Bibliography |
Record Nr. | UNINA-9910154743703321 |
Arthur James | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Unitary Representations of Reductive Lie Groups. (AM-118), Volume 118 / / David A. Vogan |
Autore | Vogan David A. |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (320 pages) |
Disciplina | 512/.55 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Lie groups
Representations of Lie groups |
Soggetto non controllato |
Abelian group
Adjoint representation Annihilator (ring theory) Atiyah–Singer index theorem Automorphic form Automorphism Cartan subgroup Circle group Class function (algebra) Classification theorem Cohomology Commutator subgroup Complete metric space Complex manifold Conjugacy class Cotangent space Dimension (vector space) Discrete series representation Dixmier conjecture Dolbeault cohomology Duality (mathematics) Eigenvalues and eigenvectors Exponential map (Lie theory) Exponential map (Riemannian geometry) Exterior algebra Function space Group homomorphism Harmonic analysis Hecke algebra Hilbert space Hodge theory Holomorphic function Holomorphic vector bundle Homogeneous space Homomorphism Induced representation Infinitesimal character Inner automorphism Invariant subspace Irreducibility (mathematics) Irreducible representation Isometry group Isometry K-finite Kazhdan–Lusztig polynomial Langlands decomposition Lie algebra cohomology Lie algebra representation Lie algebra Lie group action Lie group Mathematical induction Maximal compact subgroup Measure (mathematics) Minkowski space Nilpotent group Orbit method Orthogonal group Parabolic induction Principal homogeneous space Principal series representation Projective space Pseudo-Riemannian manifold Pullback (category theory) Ramanujan–Petersson conjecture Reductive group Regularity theorem Representation of a Lie group Representation theorem Representation theory Riemann sphere Riemannian manifold Schwartz space Semisimple Lie algebra Sheaf (mathematics) Sign (mathematics) Special case Spectral theory Sub"ient Subgroup Support (mathematics) Symplectic geometry Symplectic group Symplectic vector space Tangent space Tautological bundle Theorem Topological group Topological space Trivial representation Unitary group Unitary matrix Unitary representation Universal enveloping algebra Vector bundle Weyl algebra Weyl character formula Weyl group Zariski's main theorem Zonal spherical function |
ISBN | 1-4008-8238-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- CONTENTS -- ACKNOWLEDGEMENTS -- INTRODUCTION -- Chapter 1. COMPACT GROUPS AND THE BOREL-WEIL THEOREM -- Chapter 2. HARISH-CHANDRA MODULES -- Chapter 3. PARABOLIC INDUCTION -- Chapter 4. STEIN COMPLEMENTARY SERIES AND THE UNITARY DUAL OF GL(n,ℂ) -- Chapter 5. COHOMOLOGICAL PARABOLIC INDUCTION: ANALYTIC THEORY -- Chapter 6. COHOMOLOGICAL PARABOLIC INDUCTION: ALGEBRAIC THEORY -- Interlude. THE IDEA OF UNIPOTENT REPRESENTATIONS -- Chapter 7. FINITE GROUPS AND UNIPOTENT REPRESENTATIONS -- Chapter 8. LANGLANDS' PRINCIPLE OF FUNCTORIALITY AND UNIPOTENT REPRESENTATIONS -- Chapter 9. PRIMITIVE IDEALS AND UNIPOTENT REPRESENTATIONS -- Chapter 10. THE ORBIT METHOD AND UNIPOTENT REPRESENTATIONS -- Chapter 11. E-MULTIPLICITIES AND UNIPOTENT REPRESENTATIONS -- Chapter 12. ON THE DEFINITION OF UNIPOTENT REPRESENTATIONS -- Chapter 13. EXHAUSTION -- REFERENCES -- Backmatter |
Record Nr. | UNINA-9910154742103321 |
Vogan David A. | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|