Asymptotic Properties of Permanental Sequences : Related to Birth and Death Processes and Autoregressive Gaussian Sequences / Michael B. Marcus, Jay Rosen |
Autore | Marcus, Michael B. |
Pubbl/distr/stampa | Cham, : Springer, 2021 |
Descrizione fisica | xi, 114 p. : ill. ; 24 cm |
Altri autori (Persone) | Rosen, Jay |
Soggetto topico |
60G15 - Gaussian processes [MSC 2020]
60J10 - Markov chains (discrete-time Markov processes on discrete state spaces) [MSC 2020] 60-XX - Probability theory and stochastic processes [MSC 2020] 60G17 - Sample path properties [MSC 2020] 60J27 - Continuous-time Markov processes on discrete state spaces [MSC 2020] 60E07 - Infinitely divisible distributions; stable distributions [MSC 2020] |
Soggetto non controllato |
Asymptotic limits of stochastic processes
Autoregressive Gaussian sequences Birth and death processes Infinitely divisible processes Properties of permanental sequences Q-matrices Time-varying processes Uniform Markov chains |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0274583 |
Marcus, Michael B. | ||
Cham, : Springer, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Asymptotic Properties of Permanental Sequences : Related to Birth and Death Processes and Autoregressive Gaussian Sequences / Michael B. Marcus, Jay Rosen |
Autore | Marcus, Michael B. |
Pubbl/distr/stampa | Cham, : Springer, 2021 |
Descrizione fisica | xi, 114 p. : ill. ; 24 cm |
Altri autori (Persone) | Rosen, Jay |
Soggetto topico |
60-XX - Probability theory and stochastic processes [MSC 2020]
60E07 - Infinitely divisible distributions; stable distributions [MSC 2020] 60G15 - Gaussian processes [MSC 2020] 60G17 - Sample path properties [MSC 2020] 60J10 - Markov chains (discrete-time Markov processes on discrete state spaces) [MSC 2020] 60J27 - Continuous-time Markov processes on discrete state spaces [MSC 2020] |
Soggetto non controllato |
Asymptotic limits of stochastic processes
Autoregressive Gaussian sequences Birth and death processes Infinitely divisible processes Properties of permanental sequences Q-matrices Time-varying processes Uniform Markov chains |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00274583 |
Marcus, Michael B. | ||
Cham, : Springer, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Upper and lower bounds for stochastic processes : Decomposition Theorems / Michel Talagrand |
Autore | Talagrand, Michel |
Edizione | [2. ed] |
Pubbl/distr/stampa | Cham, : Springer, 2021 |
Descrizione fisica | xviii, 726 p. : ill. ; 24 cm |
Soggetto topico |
60G15 - Gaussian processes [MSC 2020]
60-XX - Probability theory and stochastic processes [MSC 2020] 60G07 - General theory of stochastic processes [MSC 2020] 60G05 - Foundations of stochastic processes [MSC 2020] 60G17 - Sample path properties [MSC 2020] 60E15 - Inequalities; stochastic orderings [MSC 2020] 46Bxx - Normed linear spaces and Banach spaces; Banach lattices [MSC 2020] 60G52 - Stable stochastic processes [MSC 2020] 60B11 - Probability theory on linear topological spaces [MSC 2020] 46N30 - Applications of functional analysis in probability theory and statistics [MSC 2020] |
Soggetto non controllato |
Bernoulli conjecture
Empirical processes Gaussian chaos Gaussian processes Infinitely divisible processes Lambda-p problem Majorizing measure theorem Matching theorems Random Fourier series Random series of functions Sample boundedness Ultimate matching conjecture |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0275380 |
Talagrand, Michel | ||
Cham, : Springer, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Upper and lower bounds for stochastic processes : Decomposition Theorems / Michel Talagrand |
Autore | Talagrand, Michel |
Edizione | [2. ed] |
Pubbl/distr/stampa | Cham, : Springer, 2021 |
Descrizione fisica | xviii, 726 p. : ill. ; 24 cm |
Soggetto topico |
46Bxx - Normed linear spaces and Banach spaces; Banach lattices [MSC 2020]
46N30 - Applications of functional analysis in probability theory and statistics [MSC 2020] 60-XX - Probability theory and stochastic processes [MSC 2020] 60B11 - Probability theory on linear topological spaces [MSC 2020] 60E15 - Inequalities; stochastic orderings [MSC 2020] 60G05 - Foundations of stochastic processes [MSC 2020] 60G07 - General theory of stochastic processes [MSC 2020] 60G15 - Gaussian processes [MSC 2020] 60G17 - Sample path properties [MSC 2020] 60G52 - Stable stochastic processes [MSC 2020] |
Soggetto non controllato |
Bernoulli conjecture
Empirical processes Gaussian chaos Gaussian processes Infinitely divisible processes Lambda-p problem Majorizing measure theorem Matching theorems Random Fourier series Random series of functions Sample boundedness Ultimate matching conjecture |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00275380 |
Talagrand, Michel | ||
Cham, : Springer, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|