Dimensionality Reduction in Data Science / Max Garzon ... [et al.] editors
| Dimensionality Reduction in Data Science / Max Garzon ... [et al.] editors |
| Pubbl/distr/stampa | Cham, : Springer, 2022 |
| Descrizione fisica | xi, 265 p. : ill. ; 24 cm |
| Soggetto non controllato |
Classification/Prediction
Cross-validation DNA hybridization Data Visualization Data science platforms Deep learning/Backpropagation Dimensionality reduction Experimental control Explainable solutions Extreme Dimensionality reduction Geometric methods Independent component analysis Information-theoretic methods Machine learning Molecular Methods No-Free-Lunch (NFL) theorem Regression methods Semi/Unsupervised learning Statistical Methods Supervised learning |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0277281 |
| Cham, : Springer, 2022 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Dimensionality Reduction in Data Science / Max Garzon ... [et al.] editors
| Dimensionality Reduction in Data Science / Max Garzon ... [et al.] editors |
| Pubbl/distr/stampa | Cham, : Springer, 2022 |
| Descrizione fisica | xi, 265 p. : ill. ; 24 cm |
| Soggetto topico |
00B15 - Collections of articles of miscellaneous specific interest [MSC 2020]
68-XX - Computer science [MSC 2020] 68T09 - Computational aspects of data analysis and big data [MSC 2020] |
| Soggetto non controllato |
Classification/Prediction
Cross-validation DNA hybridization Data Visualization Data science platforms Deep learning/Backpropagation Dimensionality reduction Experimental control Explainable solutions Extreme Dimensionality reduction Geometric methods Independent component analysis Information-theoretic methods Machine learning Molecular Methods No-Free-Lunch (NFL) theorem Regression methods Semi/Unsupervised learning Statistical Methods Supervised learning |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00277281 |
| Cham, : Springer, 2022 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Minimum Divergence Methods in Statistical Machine Learning : From an Information Geometric Viewpoint / Shinto Eguchi, Osamu Komori
| Minimum Divergence Methods in Statistical Machine Learning : From an Information Geometric Viewpoint / Shinto Eguchi, Osamu Komori |
| Autore | Eguchi, Shinto |
| Pubbl/distr/stampa | Tokyo, : Springer, 2022 |
| Descrizione fisica | x, 221 p. : ill. ; 24 cm |
| Altri autori (Persone) | Komori, Osamu |
| Soggetto non controllato |
Boosting
Independent component analysis Information Geometry Kernel Method Machine learning |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN0278247 |
Eguchi, Shinto
|
||
| Tokyo, : Springer, 2022 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
Minimum Divergence Methods in Statistical Machine Learning : From an Information Geometric Viewpoint / Shinto Eguchi, Osamu Komori
| Minimum Divergence Methods in Statistical Machine Learning : From an Information Geometric Viewpoint / Shinto Eguchi, Osamu Komori |
| Autore | Eguchi, Shinto |
| Pubbl/distr/stampa | Tokyo, : Springer, 2022 |
| Descrizione fisica | x, 221 p. : ill. ; 24 cm |
| Altri autori (Persone) | Komori, Osamu |
| Soggetto non controllato |
Boosting
Independent component analysis Information Geometry Kernel methods Machine learning |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00278247 |
Eguchi, Shinto
|
||
| Tokyo, : Springer, 2022 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||