Art meets mathematics in the fourth dimension / Stephen Leon Lipscomb |
Autore | Lipscomb, Stephen L. |
Edizione | [2. ed] |
Pubbl/distr/stampa | Cham, : Springer, 2014 |
Descrizione fisica | XVII, 184 p. : ill. ; 24 cm |
Soggetto topico |
28A80 - Fractals [MSC 2020]
55M10 - Dimension theory in algebraic topology [MSC 2020] 97M80 - Arts, music, language, architecture (aspects of mathematics education) [MSC 2020] |
Soggetto non controllato |
3-sphere
4-webart and mathematics Fourth dimension Fractals Hypersphere |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0103438 |
Lipscomb, Stephen L.
![]() |
||
Cham, : Springer, 2014 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Art meets mathematics in the fourth dimension / Stephen Leon Lipscomb |
Autore | Lipscomb, Stephen L. |
Edizione | [2. ed] |
Pubbl/distr/stampa | Cham, : Springer, 2014 |
Descrizione fisica | XVII, 184 p. : ill. ; 24 cm |
Soggetto topico |
28A80 - Fractals [MSC 2020]
55M10 - Dimension theory in algebraic topology [MSC 2020] 97M80 - Arts, music, language, architecture (aspects of mathematics education) [MSC 2020] |
Soggetto non controllato |
3-sphere
4-webart and mathematics Fourth dimension Fractals Hypersphere |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00103438 |
Lipscomb, Stephen L.
![]() |
||
Cham, : Springer, 2014 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Curvature and Betti Numbers. (AM-32), Volume 32 / / Kentaro Yano, Salomon Trust |
Autore | Trust Salomon |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (205 pages) |
Disciplina |
513.7
516.7* |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Curvature
Geometry, Differential |
Soggetto non controllato |
Abelian integral
Affine connection Algebraic operation Almost periodic function Analytic function Arc length Betti number Coefficient Compact space Complex analysis Complex conjugate Complex dimension Complex manifold Conservative vector field Constant curvature Constant function Continuous function Convex set Coordinate system Covariance and contravariance of vectors Covariant derivative Curvature Derivative Differential form Differential geometry Dimension (vector space) Dimension Einstein manifold Equation Euclidean domain Euclidean geometry Euclidean space Existential quantification Geometry Hausdorff space Hypersphere Killing vector field Kähler manifold Lie group Manifold Metric tensor (general relativity) Metric tensor Mixed tensor One-parameter group Orientability Partial derivative Periodic function Permutation Quantity Ricci curvature Riemannian manifold Scalar (physics) Sectional curvature Self-adjoint Special case Subset Summation Symmetric tensor Symmetrization Tensor algebra Tensor calculus Tensor field Tensor Theorem Torsion tensor Two-dimensional space Uniform convergence Uniform space Unit circle Unit sphere Unit vector Vector field |
ISBN | 1-4008-8220-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Preface -- Contents -- Chapter I. Riemannian Manifold -- Chapter II. Harmonic and Killing Vectors -- Chapter III. Harmonic and Killing Tensors -- Chapter IV. Harmonic and Killing Tensors in Flat Manifolds -- Chapter V. Deviation from Flatness -- Chapter VI. Semi-simple Group Spaces -- Chapter VII. Pseudo-harmonic Tensors and Pseudo-Killing Tensors in Metric Manifolds with Torsion -- Chapter VIII. Kaehler Manifold -- Chapter IX. Supplements / Bochner, S. -- Bibliography -- Backmatter |
Record Nr. | UNINA-9910154748603321 |
Trust Salomon
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Harmonic Maps and Minimal Immersions with Symmetries (AM-130), Volume 130 : Methods of Ordinary Differential Equations Applied to Elliptic Variational Problems. (AM-130) / / Andrea Ratto, James Eells |
Autore | Eells James |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (235 pages) : illustrations |
Disciplina | 514/.7 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Harmonic maps
Immersions (Mathematics) Differential equations, Elliptic - Numerical solutions |
Soggetto non controllato |
Arc length
Catenary Clifford algebra Codimension Coefficient Compact space Complex projective space Connected sum Constant curvature Corollary Covariant derivative Curvature Cylinder (geometry) Degeneracy (mathematics) Diagram (category theory) Differential equation Differential geometry Elliptic partial differential equation Embedding Energy functional Equation Existence theorem Existential quantification Fiber bundle Gauss map Geometry and topology Geometry Gravitational field Harmonic map Hyperbola Hyperplane Hypersphere Hypersurface Integer Iterative method Levi-Civita connection Lie group Mathematics Maximum principle Mean curvature Normal (geometry) Numerical analysis Open set Ordinary differential equation Parabola Quadratic form Sign (mathematics) Special case Stiefel manifold Submanifold Suggestion Surface of revolution Symmetry Tangent bundle Theorem Vector bundle Vector space Vertical tangent Winding number |
ISBN | 1-4008-8250-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- INTRODUCTION -- TABLE OF CONTENTS -- PART 1. BASIC VARIATIONAL AND GEOMETRICAL PROPERTIES -- PART 2. G-INVARIANT MINIMAL AND CONSTANT MEAN CURVATURE IMMERSIONS -- PART 3. HARMONIC MAPS BETWEEN SPHERES -- APPENDIX 1. SECOND VARIATIONS -- APPENDIX 2. RIEMANNIAN IMMERSIONS Sm → Sn -- APPENDIX 3. MINIMAL GRAPHS AND PENDENT DROPS -- APPENDIX 4. FURTHER ASPECTS OF PENDULUM TYPE EQUATIONS -- REFERENCES -- INDEX |
Record Nr. | UNINA-9910154754703321 |
Eells James
![]() |
||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|