top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Hyperspectral Imaging for Fine to Medium Scale Applications in Environmental Sciences
Hyperspectral Imaging for Fine to Medium Scale Applications in Environmental Sciences
Autore Vohland Michael
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (218 p.)
Soggetto topico Research & information: general
Soggetto non controllato hyperspectral
topographic correction
atmospheric correction
radiometric correction
long-range
long-distance
Structure from Motion (SfM)
photogrammetry
mineral mapping
minimum wavelength mapping
Maarmorilik
Riotinto
Hyperspectral image
bio-optical algorithm
phycocyanin
chlorophyll-a
mangrove species classification
close-range hyperspectral imaging
field hyperspectral measurement
waveband selection
machine learning
instrument development
spectroradiometry
telescope
receiver
soil
soil salinity
unmanned aerial vehicle
hyperspectral imager
random forest regression
electromagnetic induction
hyperspectral imaging
tree species
multiple classifier fusion
convolutional neural network
random forest
rotation forest
sea ice
ice algae
biomass
fine-scale
under-ice
underwater
antarctica
structure from motion
georectification
mosaicking
push-broom
UAV
chlorophyll a
colored dissolved organic matter
in situ measurements
vertical distribution
water column
snapshot hyperspectral imaging
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557368003321
Vohland Michael  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent Processing on Image and Optical Information
Intelligent Processing on Image and Optical Information
Autore Yeom Seokwon
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (324 p.)
Soggetto topico History of engineering & technology
Soggetto non controllato change detection
NSCT
variogram function
structure similarity
Dongting Lake
ego-motion estimation
hand-eye calibration
IMU
lidar odometry
sensor fusion
texture classification
Gabor filter
parameter optimization
feature selection
hybrid ant lion optimizer
wireless multimedia sensor networks
wildlife monitoring image
extraction
Hermite
adaptive mean-shift
biomedical imaging
bone fracture
calcaneus
CT image
segmentation
zebrafish egg
microscopy image processing
convolutional neural network
digital image correlation
high-temperature measurement
heat waves
thermal disturbance
background-oriented schlieren
fermentation monitoring
quality inspection
process automation
deep learning
superellipsoid model fitting
optical sensor
multi-sensor
face registration
inner-distance
Student's-t Mixtures Model
image fusion
continuous casting slabs
surface defect classification
discrete non-separable shearlet transform
gray-level co-occurrence matrix
kernel spectral regression
block compressed sensing
error resilience
reconstruction
image completion
tensor decomposition models
image interpolation
image up-scaling
numerical optimization
ADAM
machine learning
stochastic gradient methods
healthy and infected lemons
Hyperspectral image
Penicillium digitatum pathogen
lemon skin
dominant spectral wavelength
spectral intensity ratio
zebrafish larva
microscopy image analysis
deep neural network
clustering evaluation
clustering algorithm
cluster validity index
boundary point
interior point
radiographic image
image processing
feature extraction
classifier
defect detection
generative models
GAN (Generative adversarial networks)
facial image
generation
database augmentation
synthesis
autofocus
night vision goggles
sparse and low-rank matrix decomposition
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557104903321
Yeom Seokwon  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui