Global surgery formula for the Casson-Walker invariant / / by Christine Lescop |
Autore | Lescop Christine <1966-> |
Pubbl/distr/stampa | Princeton, New Jersey : , : Princeton University Press, , 1996 |
Descrizione fisica | 1 online resource (156 p.) |
Disciplina | 514/.72 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Surgery (Topology)
Three-manifolds (Topology) |
Soggetto non controllato |
3-manifold
Addition Alexander polynomial Ambient isotopy Betti number Casson invariant Change of basis Change of variables Cobordism Coefficient Combination Combinatorics Computation Conjugacy class Connected component (graph theory) Connected space Connected sum Cup product Determinant Diagram (category theory) Disk (mathematics) Empty set Exterior (topology) Fiber bundle Fibration Function (mathematics) Fundamental group Homeomorphism Homology (mathematics) Homology sphere Homotopy sphere Indeterminate (variable) Integer Klein bottle Knot theory Manifold Morphism Notation Orientability Permutation Polynomial Prime number Projective plane Scientific notation Seifert surface Sequence Summation Symmetrization Taylor series Theorem Topology Tubular neighborhood Unlink |
ISBN |
0-691-02133-3
1-4008-6515-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Table of contents -- Chapter 1. Introduction and statements of the results -- Chapter 2. The Alexander series of a link in a rational homology sphere and some of its properties -- Chapter 3. Invariance of the surgery formula under a twist homeomorphism -- Chapter 4. The formula for surgeries starting from rational homology spheres -- Chapter 5. The invariant A. for 3-manifolds with nonzero rank -- Chapter 6. Applications and variants of the surgery formula -- Appendix. More about the Alexander series -- Bibliography -- Index |
Record Nr. | UNINA-9910786748103321 |
Lescop Christine <1966-> | ||
Princeton, New Jersey : , : Princeton University Press, , 1996 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Global surgery formula for the Casson-Walker invariant / / by Christine Lescop |
Autore | Lescop Christine <1966-> |
Pubbl/distr/stampa | Princeton, New Jersey : , : Princeton University Press, , 1996 |
Descrizione fisica | 1 online resource (156 p.) |
Disciplina | 514/.72 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Surgery (Topology)
Three-manifolds (Topology) |
Soggetto non controllato |
3-manifold
Addition Alexander polynomial Ambient isotopy Betti number Casson invariant Change of basis Change of variables Cobordism Coefficient Combination Combinatorics Computation Conjugacy class Connected component (graph theory) Connected space Connected sum Cup product Determinant Diagram (category theory) Disk (mathematics) Empty set Exterior (topology) Fiber bundle Fibration Function (mathematics) Fundamental group Homeomorphism Homology (mathematics) Homology sphere Homotopy sphere Indeterminate (variable) Integer Klein bottle Knot theory Manifold Morphism Notation Orientability Permutation Polynomial Prime number Projective plane Scientific notation Seifert surface Sequence Summation Symmetrization Taylor series Theorem Topology Tubular neighborhood Unlink |
ISBN |
0-691-02133-3
1-4008-6515-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Table of contents -- Chapter 1. Introduction and statements of the results -- Chapter 2. The Alexander series of a link in a rational homology sphere and some of its properties -- Chapter 3. Invariance of the surgery formula under a twist homeomorphism -- Chapter 4. The formula for surgeries starting from rational homology spheres -- Chapter 5. The invariant A. for 3-manifolds with nonzero rank -- Chapter 6. Applications and variants of the surgery formula -- Appendix. More about the Alexander series -- Bibliography -- Index |
Record Nr. | UNINA-9910827210603321 |
Lescop Christine <1966-> | ||
Princeton, New Jersey : , : Princeton University Press, , 1996 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Knots, Groups and 3-Manifolds (AM-84), Volume 84 : Papers Dedicated to the Memory of R.H. Fox. (AM-84) / / Lee Paul Neuwirth |
Autore | Neuwirth Lee Paul |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (352 pages) : illustrations |
Disciplina | 514.2 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Knot theory
Group theory Three-manifolds (Topology) |
Soggetto non controllato |
3-manifold
3-sphere Additive group Alexander duality Algebraic equation Algebraic surface Algebraic variety Automorphic form Automorphism Big O notation Bilinear form Borromean rings Boundary (topology) Braid group Cartesian product Central series Chain rule Characteristic polynomial Coefficient Cohomological dimension Commutative ring Commutator subgroup Complex Lie group Complex coordinate space Complex manifold Complex number Conjugacy class Connected sum Coprime integers Coset Counterexample Cyclic group Dedekind domain Diagram (category theory) Diffeomorphism Disjoint union Divisibility rule Double coset Equation Equivalence class Euler characteristic Fiber bundle Finite group Fundamental group Generating set of a group Graded ring Graph product Group ring Group theory Groupoid Heegaard splitting Holomorphic function Homeomorphism Homological algebra Homology (mathematics) Homology sphere Homomorphism Homotopy group Homotopy sphere Homotopy Hurewicz theorem Infimum and supremum Integer matrix Integer Intersection number (graph theory) Intersection theory Knot group Knot polynomial Loop space Main diagonal Manifold Mapping cylinder Mathematical induction Meromorphic function Monodromy Monomorphism Multiplicative group Permutation Poincaré conjecture Principal ideal domain Proportionality (mathematics) Quotient space (topology) Riemann sphere Riemann surface Seifert fiber space Simplicial category Special case Spectral sequence Subgroup Submanifold Surjective function Symmetric group Symplectic matrix Theorem Three-dimensional space (mathematics) Topology Torus knot Triangle group Variable (mathematics) Weak equivalence (homotopy theory) |
ISBN | 1-4008-8151-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- CONTENTS -- INTRODUCTION / Neuwirth, L. -- BIBLIOGRAPHY, RALPH HARTZLER FOX (1913-1973) -- Knots and Links -- SYMMETRIC FIBERED LINKS / Goldsmith, Deborah L. -- KNOT MODULES / Levine, Jerome -- THE THIRD HOMOTOPY GROUP OF SOME HIGHER DIMENSIONAL KNOTS / Lomonaco, S. J . -- OCTAHEDRAL KNOT COVERS / Perko, Kenneth A. -- SOME KNOTS SPANNED BY MORE THAN ONE UNKNOTTED SURFACE OF MINIMAL GENUS / Trotter, H. F . -- GROUPS AND MANIFOLDS CHARACTERIZING LINKS / Whitten, Wilbur -- Group Theory -- HNN GROUPS AND GROUPS WITH CENTER / Cossey, John / Smythe, N. -- QUOTIENTS OF THE POWERS OF THE AUGMENTATION IDEAL IN A GROUP RING / Stallings, John R. -- KNOT-LIKE GROUPS / Strasser, Elvira Rapaport -- 3-Dimensional Manifolds -- ON THE EQUIVALENCE OF HEEGAARD SPLITTINGS OF CLOSED, ORIENT ABLE 3-MANIFOLDS / Birman, Joan S. -- BRANCHED CYCLIC COVERINGS / Cappell, Sylvain E. / Shaneson, Julius L. -- ON THE 3-DIMENSIONAL BRIESKORN MANIFOLDS M(p,q,r) / Milnor, John -- SURGERY ON LINKS AND DOUBLE BRANCHED COVERS OF S3 / Montesinos, Jose M. -- PLANAR REGULAR COVERINGS OF ORIENTABLE CLOSED SURFACES / Papakyriakopoulos, C. D. -- INFINITELY DIVISIBLE ELEMENTS IN 3-MANIFOLD GROUPS / Shalen, Peter B. -- Backmatter |
Record Nr. | UNINA-9910154752003321 |
Neuwirth Lee Paul | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Multiaxial Actions on Manifolds / Michael Davis |
Autore | Davis, Michael W. |
Pubbl/distr/stampa | Berlin, : Springer, 1978 |
Descrizione fisica | vii, 144 p. ; 24 cm |
Soggetto topico |
57S25 - Groups acting on specific manifolds [MSC 2020]
57R60 - Homotopy spheres, Poincaré conjecture [MSC 2020] 57S15 - Compact Lie groups of differentiable transformations [MSC 2020] 57R85 - Equivariant cobordism [MSC 2020] |
Soggetto non controllato |
Compact Liesche groups
Group operations Homotopy sphere Invariants Manifolds |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0260856 |
Davis, Michael W. | ||
Berlin, : Springer, 1978 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Multiaxial Actions on Manifolds / Michael Davis |
Autore | Davis, Michael W. |
Pubbl/distr/stampa | Berlin, : Springer, 1978 |
Descrizione fisica | vii, 144 p. ; 24 cm |
Soggetto topico |
57R60 - Homotopy spheres, Poincaré conjecture [MSC 2020]
57R85 - Equivariant cobordism [MSC 2020] 57S15 - Compact Lie groups of differentiable transformations [MSC 2020] 57S25 - Groups acting on specific manifolds [MSC 2020] |
Soggetto non controllato |
Compact Liesche groups
Group operations Homotopy sphere Invariants Manifolds |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00260856 |
Davis, Michael W. | ||
Berlin, : Springer, 1978 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Singular Points of Complex Hypersurfaces. (AM-61), Volume 61 / / John Milnor |
Autore | Milnor John |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (137 pages) : illustrations |
Disciplina | 516.35 |
Collana | Annals of Mathematics Studies |
Soggetto topico | Geometry, Algebraic |
Soggetto non controllato |
3-sphere
Addition Alexander polynomial Algebraic curve Algebraic equation Algebraic geometry Analytic manifold Apply Approximation Binary icosahedral group Boundary (topology) Characteristic polynomial Codimension Coefficient Commutator subgroup Commutator Compact group Complex analysis Complex number Complex projective plane Conjecture Contradiction Coordinate space Coordinate system Derivative Differentiable manifold Dimension Directional derivative Euclidean space Euler number Exact sequence Existential quantification Exotic sphere Fiber bundle Fibration Field of fractions Finite group Finite set Finitely generated group Formal power series Free abelian group Free group Fundamental group Geometry Hermitian matrix Hessian matrix Homology (mathematics) Homology sphere Homotopy sphere Homotopy Hopf fibration Hypersurface Icosahedron Implicit function theorem Integer Integral domain Inverse function theorem Knot group Knot theory Line segment Linear combination Linear map Manifold Minor (linear algebra) Morse theory N-sphere Neighbourhood (mathematics) Normal (geometry) Normal subgroup Open set Orientability Parametrization Polynomial Prime ideal Principal ideal Projective space Real number Regular icosahedron Retract Riemannian manifold Second derivative Sign (mathematics) Simply connected space Smoothness Special case Submanifold Subset Surjective function Tangent space Theorem Topological manifold Topology Transcendence degree Tubular neighborhood Unit interval Unit sphere Unit vector Variable (mathematics) Vector field Vector space |
ISBN | 1-4008-8181-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- PREFACE -- CONTENTS -- §1. INTRODUCTION -- §2. ELEMENTARY FACTS ABOUT REAL OR COMPLEX ALGEBRAIC SETS -- §3. THE CURVE SELECTION LEMMA -- §4. THE FIBRATION THEOREM -- §5. THE TOPOLOGY OF THE FIBERAND OF K -- §6. THE CASE OF AN ISOLATED CRITICAL POINT -- §7. THE MIDDLE BETTI NUMBER OF THE FIBER -- §8. IS K A TOPOLOGICAL SPHERE ? -- §9. BRIESKORN VARIETIES AND WEIGHTED HOMOGENEOUS POLYNOMIALS -- § 10. THE CLASSICAL CASE: CURVES IN C2 -- §11. A FIBRATION THEOREM FOR REAL SINGULARITIES -- APPENDIX A. WHITNEY'S FINITENESS THEOREM FOR ALGEBRAIC SETS -- APPENDIX B. THE MULTIPLICITY OF AN ISOLATED SOLUTION OF ANALYTIC EQUATIONS -- BIBLIOGRAPHY |
Record Nr. | UNINA-9910154743603321 |
Milnor John | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|