top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
1: Basic concepts / Nathan Jacobson
1: Basic concepts / Nathan Jacobson
Autore Jacobson, Nathan
Pubbl/distr/stampa New York, : Springer, 1951
Descrizione fisica XII, 217 p. ; 24 cm
Soggetto topico 20-XX - Group theory and generalizations [MSC 2020]
13-XX - Commutative algebra [MSC 2020]
12-XX - Field theory and polynomials [MSC 2020]
06-XX - Order, lattices, ordered algebraic structures [MSC 2020]
00A05 - Mathematics in general [MSC 2020]
Soggetto non controllato Algebra
Automorphisms
Fields
Galois theory
Homomorphism
Linear algebra
Matrix
Permutation
Transformation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0267398
Jacobson, Nathan  
New York, : Springer, 1951
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
1: Basic concepts / Nathan Jacobson
1: Basic concepts / Nathan Jacobson
Autore Jacobson, Nathan
Pubbl/distr/stampa New York, : Springer, 1951
Descrizione fisica XII, 217 p. ; 24 cm
Soggetto topico 20-XX - Group theory and generalizations [MSC 2020]
13-XX - Commutative algebra [MSC 2020]
12-XX - Field theory and polynomials [MSC 2020]
06-XX - Order, lattices, ordered algebraic structures [MSC 2020]
Soggetto non controllato Algebra
Automorphisms
Fields
Galois theory
Homomorphism
Linear algebra
Matrix
Permutation
Transformation
ISBN 978-03-87901-81-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0029631
Jacobson, Nathan  
New York, : Springer, 1951
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
1: Basic concepts / Nathan Jacobson
1: Basic concepts / Nathan Jacobson
Autore Jacobson, Nathan
Pubbl/distr/stampa New York, : Springer, 1951
Descrizione fisica XII, 217 p. ; 24 cm
Soggetto topico 06-XX - Order, lattices, ordered algebraic structures [MSC 2020]
12-XX - Field theory and polynomials [MSC 2020]
13-XX - Commutative algebra [MSC 2020]
20-XX - Group theory and generalizations [MSC 2020]
Soggetto non controllato Algebra
Automorphisms
Fields
Galois theory
Homomorphism
Linear algebra
Matrix
Permutation
Transformation
ISBN 978-03-87901-81-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00029631
Jacobson, Nathan  
New York, : Springer, 1951
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
1: Basic concepts / Nathan Jacobson
1: Basic concepts / Nathan Jacobson
Autore Jacobson, Nathan
Pubbl/distr/stampa New York, : Springer, 1951
Descrizione fisica XII, 217 p. ; 24 cm
Soggetto topico 00A05 - Mathematics in general [MSC 2020]
06-XX - Order, lattices, ordered algebraic structures [MSC 2020]
12-XX - Field theory and polynomials [MSC 2020]
13-XX - Commutative algebra [MSC 2020]
20-XX - Group theory and generalizations [MSC 2020]
Soggetto non controllato Algebra
Automorphisms
Fields
Galois theory
Homomorphism
Linear algebra
Matrix
Permutation
Transformation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00267398
Jacobson, Nathan  
New York, : Springer, 1951
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
3: Theory of Fields and Galois Theory / Nathan Jacobson
3: Theory of Fields and Galois Theory / Nathan Jacobson
Autore Jacobson, Nathan
Pubbl/distr/stampa New York, : Springer, 1964
Descrizione fisica XII, 324 p. ; 24 cm
Soggetto topico 11-XX - Number theory [MSC 2020]
12-XX - Field theory and polynomials [MSC 2020]
00A05 - Mathematics in general [MSC 2020]
Soggetto non controllato Abstract algebra
Algebra
Algebraic curves
Equations
Finite
Functions
Galois theory
Geometry
Homomorphism
Morphism
Ring theory
Vector spaces
commutative groups
theory of fields
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0267489
Jacobson, Nathan  
New York, : Springer, 1964
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
3: Theory of Fields and Galois Theory / Nathan Jacobson
3: Theory of Fields and Galois Theory / Nathan Jacobson
Autore Jacobson, Nathan
Pubbl/distr/stampa New York, : Springer, 1964
Descrizione fisica XII, 324 p. ; 24 cm
Soggetto topico 00A05 - Mathematics in general [MSC 2020]
11-XX - Number theory [MSC 2020]
12-XX - Field theory and polynomials [MSC 2020]
Soggetto non controllato Abstract algebra
Algebra
Algebraic curves
Commutative groups
Equations
Finite
Functions
Galois theory
Geometry
Homomorphism
Morphism
Ring theory
Vector spaces
theory of fields
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00267489
Jacobson, Nathan  
New York, : Springer, 1964
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Abelian Varieties / Serge Lang
Abelian Varieties / Serge Lang
Autore Lang, Serge <1927-2005>
Pubbl/distr/stampa New York, : Springer-Verlag, 1983
Descrizione fisica xii, 256 p. : ill. ; 24 cm
Soggetto non controllato Abelian varieties
Algebra
Homomorphism
Varieties
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0268558
Lang, Serge <1927-2005>  
New York, : Springer-Verlag, 1983
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Abelian Varieties / Serge Lang
Abelian Varieties / Serge Lang
Autore Lang, Serge <1927-2005>
Pubbl/distr/stampa New York, : Springer-Verlag, 1983
Descrizione fisica xii, 256 p. : ill. ; 24 cm
Soggetto topico 14-XX - Algebraic geometry [MSC 2020]
14C05 - Parametrization (Chow and Hilbert schemes) [MSC 2020]
14C17 - Intersection theory, characteristic classes, intersection multiplicities in algebraic geometry [MSC 2020]
14K05 - Algebraic theory of abelian varieties [MSC 2020]
14K20 - Analytic theory of abelian varieties; abelian integrals and differentials [MSC 2020]
14K30 - Picard schemes, higher Jacobians [MSC 2020]
14Kxx Abelian varieties and schemes [MSC 2020]
Soggetto non controllato Abelian varieties
Algebra
Homomorphism
Varieties
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00268558
Lang, Serge <1927-2005>  
New York, : Springer-Verlag, 1983
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
The Admissible Dual of GL(N) via Compact Open Subgroups. (AM-129), Volume 129 / / C. Bushnell, P. C. Kutzko
The Admissible Dual of GL(N) via Compact Open Subgroups. (AM-129), Volume 129 / / C. Bushnell, P. C. Kutzko
Autore Bushnell C.
Pubbl/distr/stampa Princeton, NJ : , : Princeton University Press, , [2016]
Descrizione fisica 1 online resource (327 pages) : illustrations
Disciplina 512/.2
Collana Annals of Mathematics Studies
Soggetto topico Representations of groups
Nonstandard mathematical analysis
Soggetto non controllato Abelian group
Abuse of notation
Additive group
Affine Hecke algebra
Algebra homomorphism
Approximation
Automorphism
Bijection
Block matrix
Calculation
Cardinality
Classical group
Computation
Conjecture
Conjugacy class
Contradiction
Corollary
Coset
Critical exponent
Diagonal matrix
Dimension (vector space)
Dimension
Discrete series representation
Discrete valuation ring
Divisor
Eigenvalues and eigenvectors
Equivalence class
Exact sequence
Exactness
Existential quantification
Explicit formula
Explicit formulae (L-function)
Field extension
Finite group
Functor
Gauss sum
General linear group
Group theory
Haar measure
Harmonic analysis
Hecke algebra
Homomorphism
Identity matrix
Induced representation
Integer
Irreducible representation
Isomorphism class
Iwahori subgroup
Jordan normal form
Levi decomposition
Local Langlands conjectures
Local field
Locally compact group
Mathematics
Matrix coefficient
Maximal compact subgroup
Maximal ideal
Multiset
Normal subgroup
P-adic number
Permutation matrix
Polynomial
Profinite group
Quantity
Rational number
Reductive group
Representation theory
Requirement
Residue field
Ring (mathematics)
Scientific notation
Simple module
Special case
Sub"ient
Subgroup
Subset
Support (mathematics)
Symmetric group
Tensor product
Terminology
Theorem
Topological group
Topology
Vector space
Weil group
Weyl group
ISBN 1-4008-8249-4
Classificazione SK 340
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Introduction -- Comments for the reader -- 1. Exactness and intertwining -- 2. The structure of simple strata -- 3. The simple characters of a simple stratum -- 4. Interlude with Hecke algebra -- 5. Simple types -- 6. Maximal types -- 7. Typical representations -- 8. Atypical representations -- References -- Index of notation and terminology
Record Nr. UNINA-9910154750803321
Bushnell C.  
Princeton, NJ : , : Princeton University Press, , [2016]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Algebra : An Approach via Module Theory / William A. Adkins, Steven H. Weintraub
Algebra : An Approach via Module Theory / William A. Adkins, Steven H. Weintraub
Autore Adkins, William A.
Pubbl/distr/stampa New York, : Springer, 1992
Descrizione fisica x, 526 p. ; 25 cm
Altri autori (Persone) Weintraub, Steven H.
Soggetto topico 12-XX - Field theory and polynomials [MSC 2020]
13-XX - Commutative algebra [MSC 2020]
15-XX - Linear and multilinear algebra; matrix theory [MSC 2020]
16-XX - Associative rings and algebras [MSC 2020]
20-XX - Group theory and generalizations [MSC 2020]
Soggetto non controllato Algebra
Automorphisms
Fields
Homomorphism
Linear algebra
Matrices
Matrix
Permutation
Quadratic forms
Transformation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00289883
Adkins, William A.  
New York, : Springer, 1992
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui