Fundamentals of High-Dimensional Statistics : With Exercises and R Labs / Johannes Lederer |
Autore | Lederer, Johannes |
Pubbl/distr/stampa | Cham, : Springer, 2022 |
Descrizione fisica | xiv, 355 p. : ill. ; 24 cm |
Soggetto topico |
62-XX - Statistics [MSC 2020]
62H22 - Probabilistic graphical models [MSC 2020] 62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020] 62R07 - Statistical aspects of big data and data science [MSC 2020] |
Soggetto non controllato |
Calibration
Estimation Graphical Models High dimensional inference High-Dimensional Data High-dimensional statistics Lasso Linear regression Prediction R labs Regularization Sparsity Statistical inference |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0277448 |
Lederer, Johannes | ||
Cham, : Springer, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Fundamentals of High-Dimensional Statistics : With Exercises and R Labs / Johannes Lederer |
Autore | Lederer, Johannes |
Pubbl/distr/stampa | Cham, : Springer, 2022 |
Descrizione fisica | xiv, 355 p. : ill. ; 24 cm |
Soggetto topico |
62-XX - Statistics [MSC 2020]
62H22 - Probabilistic graphical models [MSC 2020] 62J07 - Ridge regression; shrinkage estimators (Lasso) [MSC 2020] 62R07 - Statistical aspects of big data and data science [MSC 2020] |
Soggetto non controllato |
Calibration
Estimation Graphical Models High dimensional inference High-Dimensional Data High-dimensional statistics Lasso Linear regression Prediction R labs Regularization Sparsity Statistical inference |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00277448 |
Lederer, Johannes | ||
Cham, : Springer, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Statistical analysis for high-dimensional data : the Abel symposium 2014 / Arnoldo Frigessi ... [et al.] editors |
Pubbl/distr/stampa | Cham, : Springer, 2016 |
Descrizione fisica | XII, 306 p. : ill. ; 24 cm |
Soggetto topico |
62P10 - Applications of statistics to biology and medical sciences; meta analysis [MSC 2020]
62Hxx - Multivariate analysis [MSC 2020] 62Jxx - Linear inference, regression [MSC 2020] 62H30 - Classification and discrimination; cluster analysis (statistical aspects) [MSC 2020] 62F12 - Asymptotic properties of parametric estimators [MSC 2020] 62Fxx - Parametric inference [MSC 2020] |
Soggetto non controllato |
Dimension reduction
Factor models High dimensional inference Multiple testing Penelised regression Sparsity Statistical genomics Statistical inference in high dimensions Thresholding |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0115372 |
Cham, : Springer, 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Statistical analysis for high-dimensional data : the Abel symposium 2014 / Arnoldo Frigessi ... [et al.] editors |
Pubbl/distr/stampa | Cham, : Springer, 2016 |
Descrizione fisica | XII, 306 p. : ill. ; 24 cm |
Soggetto topico |
62F12 - Asymptotic properties of parametric estimators [MSC 2020]
62Fxx - Parametric inference [MSC 2020] 62H30 - Classification and discrimination; cluster analysis (statistical aspects) [MSC 2020] 62Hxx - Multivariate analysis [MSC 2020] 62Jxx - Linear inference, regression [MSC 2020] 62P10 - Applications of statistics to biology and medical sciences; meta analysis [MSC 2020] |
Soggetto non controllato |
Dimension reduction
Factor models High dimensional inference Multiple testing Penelised regression Sparsity Statistical genomics Statistical inference in high dimensions Thresholding |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00115372 |
Cham, : Springer, 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|