top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Credit Risk Modeling and Management
Advances in Credit Risk Modeling and Management
Autore Vrins Frédéric
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 electronic resource (190 p.)
Soggetto topico Coins, banknotes, medals, seals (numismatics)
Soggetto non controllato recovery rates
beta regression
credit risk
contingent convertible debt
financial modelling
risk management
financial crisis
recovery rate
loss given default
model ambiguity
default time
no-arbitrage
reduced-form HJM models
recovery process
Counterparty Credit Risk
Hidden Markov Model
Risk Factor Evolution
Backtesting
FX rate
Geometric Brownian Motion
trade credit
small and micro-enterprises
financial non-financial variables
risk assessment
logistic regression
probability of default
wrong-way risk
dependence
urn model
counterparty risk
credit valuation adjustment (CVA)
XVA (X-valuation adjustments) compression
genetic algorithm
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557403603321
Vrins Frédéric  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dynamic Systems Models : New Methods of Parameter and State Estimation / Josif A. Boguslavskiy ; Mark Borodovsky editor
Dynamic Systems Models : New Methods of Parameter and State Estimation / Josif A. Boguslavskiy ; Mark Borodovsky editor
Autore Boguslavskiy, Josif A.
Pubbl/distr/stampa Cham, : Springer, 2016
Descrizione fisica xx, 201 p. ; 24 cm
Soggetto topico 68W40 - Analysis of algorithms [MSC 2020]
37Mxx - Approximation methods and numerical treatment of dynamical systems [MSC 2020]
93E11 - Filtering in stochastic control theory [MSC 2020]
93E10 - Estimation and detection in stochastic control theory [MSC 2020]
93-XX - Systems theory; control [MSC 2020]
65L09 - Numerical methods of inverse problems involving ordinary differential equations [MSC 2020]
62M20 - Inference from stochastic processes and prediction; filtering [MSC 2020]
Soggetto non controllato Aerospatial Dynamics
Asset pricing
Biological Sequence Analysis
Hidden Markov Model
Inverse Problems
Parameter Estimation
Polynomial Approximation
Speech Recognition
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0162131
Boguslavskiy, Josif A.  
Cham, : Springer, 2016
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Dynamic Systems Models : New Methods of Parameter and State Estimation / Josif A. Boguslavskiy ; Mark Borodovsky editor
Dynamic Systems Models : New Methods of Parameter and State Estimation / Josif A. Boguslavskiy ; Mark Borodovsky editor
Autore Boguslavskiy, Josif A.
Pubbl/distr/stampa Cham, : Springer, 2016
Descrizione fisica xx, 201 p. ; 24 cm
Soggetto topico 37Mxx - Approximation methods and numerical treatment of dynamical systems [MSC 2020]
62M20 - Inference from stochastic processes and prediction; filtering [MSC 2020]
65L09 - Numerical methods of inverse problems involving ordinary differential equations [MSC 2020]
68W40 - Analysis of algorithms [MSC 2020]
93-XX - Systems theory; control [MSC 2020]
93E10 - Estimation and detection in stochastic control theory [MSC 2020]
93E11 - Filtering in stochastic control theory [MSC 2020]
Soggetto non controllato Aerospatial Dynamics
Asset pricing
Biological Sequence Analysis
Hidden Markov Model
Inverse Problems
Parameter Estimation
Polynomial Approximation
Speech Recognition
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00162131
Boguslavskiy, Josif A.  
Cham, : Springer, 2016
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Machine Learning and Data Mining Applications in Power Systems
Machine Learning and Data Mining Applications in Power Systems
Autore Leonowicz Zbigniew
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (314 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Energy industries & utilities
Soggetto non controllato virtual power plant (VPP)
power quality (PQ)
global index
distributed energy resources (DER)
energy storage systems (ESS)
power systems
long-term assessment
battery energy storage systems (BESS)
smart grids
conducted disturbances
power quality
supraharmonics
2-150 kHz
Power Line Communications (PLC)
intentional emission
non-intentional emission
mains signalling
virtual power plant
data mining
clustering
distributed energy resources
energy storage systems
short term conditions
cluster analysis (CA)
nonlinear loads
harmonics, cancellation, and attenuation of harmonics
waveform distortion
THDi
low-voltage networks
optimization techniques
different batteries
off-grid microgrid
integrated renewable energy system
cluster analysis
K-means
agglomerative
ANFIS
fuzzy logic
induction generator
MPPT
neural network
renewable energy
variable speed WECS
wind energy conversion system
wind energy
frequency estimation
spectrum interpolation
power network disturbances
COVID-19
time-varying reproduction number
social distancing
load profile
demographic characteristic
household energy consumption
demand-side management
energy management
time series
Hidden Markov Model
short-term forecast
sparse signal decomposition
supervised dictionary learning
dictionary impulsion
singular value decomposition
discrete cosine transform
discrete Haar transform
discrete wavelet transform
transient stability assessment
home energy management
binary-coded genetic algorithms
optimal power scheduling
demand response
Data Injection Attack
machine learning
critical infrastructure
smart grid
water treatment plant
power system
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910576877503321
Leonowicz Zbigniew  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection [[electronic resource] /] / by Xuefeng Zhou, Hongmin Wu, Juan Rojas, Zhihao Xu, Shuai Li
Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection [[electronic resource] /] / by Xuefeng Zhou, Hongmin Wu, Juan Rojas, Zhihao Xu, Shuai Li
Autore Zhou Xuefeng
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Springer Nature, 2020
Descrizione fisica 1 online resource (XVII, 137 p. 50 illus., 44 illus. in color.)
Disciplina 629.892
Soggetto topico Robotics
Automation
Statistics 
Control engineering
Mechatronics
Machine learning
Mathematical models
Robotics and Automation
Bayesian Inference
Control, Robotics, Mechatronics
Machine Learning
Mathematical Modeling and Industrial Mathematics
Soggetto non controllato Robotics and Automation
Bayesian Inference
Control, Robotics, Mechatronics
Machine Learning
Mathematical Modeling and Industrial Mathematics
Robotic Engineering
Control, Robotics, Automation
Collaborative Robot Introspection
Nonparametric Bayesian Inference
Anomaly Monitoring and Diagnosis
Multimodal Perception
Anomaly Recovery
Human-robot Collaboration
Robot Safety and Protection
Hidden Markov Model
Robot Autonomous Manipulation
open access
Robotics
Bayesian inference
Automatic control engineering
Electronic devices & materials
Machine learning
Mathematical modelling
Maths for engineers
ISBN 981-15-6263-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Robot Introspection -- Nonparametric Bayesian Modeling of Multimodal Time Series -- Incremental Learning Robot Complex Task Representation and Identification -- Nonparametric Bayesian Method for Robot Anomaly Monitoring -- Nonparametric Bayesian Method for Robot Anomaly Diagnose -- Learning Policy for Robot Anomaly Recovery based on Robot.
Record Nr. UNISA-996418268803316
Zhou Xuefeng  
Springer Nature, 2020
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection / / by Xuefeng Zhou, Hongmin Wu, Juan Rojas, Zhihao Xu, Shuai Li
Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection / / by Xuefeng Zhou, Hongmin Wu, Juan Rojas, Zhihao Xu, Shuai Li
Autore Zhou Xuefeng
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Springer Nature, 2020
Descrizione fisica 1 online resource (XVII, 137 p. 50 illus., 44 illus. in color.)
Disciplina 629.892
Soggetto topico Robotics
Automation
Statistics 
Control engineering
Mechatronics
Machine learning
Mathematical models
Robotics and Automation
Bayesian Inference
Control, Robotics, Mechatronics
Machine Learning
Mathematical Modeling and Industrial Mathematics
Soggetto non controllato Robotics and Automation
Bayesian Inference
Control, Robotics, Mechatronics
Machine Learning
Mathematical Modeling and Industrial Mathematics
Robotic Engineering
Control, Robotics, Automation
Collaborative Robot Introspection
Nonparametric Bayesian Inference
Anomaly Monitoring and Diagnosis
Multimodal Perception
Anomaly Recovery
Human-robot Collaboration
Robot Safety and Protection
Hidden Markov Model
Robot Autonomous Manipulation
open access
Robotics
Bayesian inference
Automatic control engineering
Electronic devices & materials
Machine learning
Mathematical modelling
Maths for engineers
ISBN 981-15-6263-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Robot Introspection -- Nonparametric Bayesian Modeling of Multimodal Time Series -- Incremental Learning Robot Complex Task Representation and Identification -- Nonparametric Bayesian Method for Robot Anomaly Monitoring -- Nonparametric Bayesian Method for Robot Anomaly Diagnose -- Learning Policy for Robot Anomaly Recovery based on Robot.
Record Nr. UNINA-9910416119103321
Zhou Xuefeng  
Springer Nature, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection / Xuefeng Zhou ... [et al.]
Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection / Xuefeng Zhou ... [et al.]
Pubbl/distr/stampa Singapore, : Springer, 2020
Descrizione fisica xv, 137 p. : ill. ; 24 cm
Soggetto topico 62-XX - Statistics [MSC 2020]
62F15 - Bayesian inference [MSC 2020]
62M05 - Markov processes: estimation; hidden Markov models [MSC 2020]
93-XX - Systems theory; control [MSC 2020]
62H30 - Classification and discrimination; cluster analysis (statistical aspects) [MSC 2020]
62G05 - Nonparametric estimation [MSC 2020]
Soggetto non controllato Anomaly Monitoring and Diagnosis
Anomaly Recovery
Collaborative Robot Introspection
Hidden Markov Model
Human-robot Collaboration
Multimodal Perception
Nonparametric Bayesian Inference
Robot Autonomous Manipulation
Robot Safety and Protection
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0250242
Singapore, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection / Xuefeng Zhou ... [et al.]
Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection / Xuefeng Zhou ... [et al.]
Pubbl/distr/stampa Singapore, : Springer, 2020
Descrizione fisica xv, 137 p. : ill. ; 24 cm
Soggetto topico 62-XX - Statistics [MSC 2020]
62F15 - Bayesian inference [MSC 2020]
62G05 - Nonparametric estimation [MSC 2020]
62H30 - Classification and discrimination; cluster analysis (statistical aspects) [MSC 2020]
62M05 - Markov processes: estimation; hidden Markov models [MSC 2020]
93-XX - Systems theory; control [MSC 2020]
Soggetto non controllato Anomaly Monitoring and Diagnosis
Anomaly Recovery
Collaborative Robot Introspection
Hidden Markov Model
Human-robot Collaboration
Multimodal Perception
Nonparametric Bayesian Inference
Robot Autonomous Manipulation
Robot Safety and Protection
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00250242
Singapore, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Sensing and Signal Processing in Smart Healthcare
Sensing and Signal Processing in Smart Healthcare
Autore Zhao Wenbing
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (198 p.)
Soggetto topico Language
English language teaching (ELT)
Soggetto non controllato smart homes
Internet of Things (IoT)
Wi-Fi
human monitoring
behavioral analysis
ambient assisted living
intelligent luminaires
wireless sensor network
indoor localisation
indoor monitoring
Graphics Processing Units (GPUs)
CUDA
OpenMP
OpenCL
K-means
brain cancer detection
hyperspectral imaging
unsupervised clustering
impaired sensor
Structural Health Monitoring
Time of Flight
subharmonics
Cascaded-Integrator-Comb (CIC) filter
FPGA
fixed point math
data adaptive demodulator
motion estimation
inertial sensors
simulation
spline function
Kalman filter
eHealth
software engineering
gesture recognition
Dynamic Time Warping
Hidden Markov Model
usability
Cramér-Rao lower bound (CRLB)
human motion
Inertial Measurement Unit (IMU)
Time of Arrival (TOA)
wearable sensors
endothelial dysfunction
photoplethysmography
machine learning
computer-assisted screening
sleep pose recognition
keypoints feature matching
Bayesian inference
near-infrared images
scale invariant feature transform
heartbeat classification
arrhythmia
denoising autoencoder
autoencoder
deep learning
auditory perception
biometrics
computer vision
web control access
web security
human-computer interaction
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557483503321
Zhao Wenbing  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Supervised Learning with Quantum Computers / Maria Schuld, Francesco Petruccione
Supervised Learning with Quantum Computers / Maria Schuld, Francesco Petruccione
Autore Schuld, Maria
Pubbl/distr/stampa Cham, : Springer, 2018
Descrizione fisica xiii, 297 p. : ill. ; 24 cm
Altri autori (Persone) Petruccione, Francesco
Soggetto topico 81P68 - Quantum computation [MSC 2020]
68Qxx - Theory of computing [MSC 2020]
81-XX - Quantum theory [MSC 2020]
68T05 - Learning and adaptive systems in artificial intelligence [MSC 2020]
68Q12 - Quantum algorithms and complexity in the theory of computing [MSC 2020]
68Q32 - Computational learning theory [MSC 2020]
82C32 - Neural nets applied to problems in time-dependent statistical mechanics [MSC 2020]
Soggetto non controllato Adiabatic quantum computing
Artificial neural network
Belief nets
Boltzmann machines
Data driven prediction
Deutsch-Josza algorithm
Grover search
Hidden Markov Model
Hopfield models
Kernel methods
Near term application
Qsample encoding
Quantum Walks
Quantum annealing
Quantum blas
Quantum gates
Quantum inference
Quantum machine learning
Quantum phase estimation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0211752
Schuld, Maria  
Cham, : Springer, 2018
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui