Number theory : an introduction via the distribution of primes / Benjamin Fine, Gerhard Rosenberger |
Autore | Fine, Benjamin |
Edizione | [2. ed] |
Pubbl/distr/stampa | [Basel], : Birkhäuser, : Springer, 2016 |
Descrizione fisica | XIII, 413 p. : ill. ; 24 cm |
Altri autori (Persone) | Rosenberger, Gerhard |
Soggetto topico |
11-XX - Number theory [MSC 2020]
11Axx - Elementary number theory [MSC 2020] 11T71 Algebraic coding theory; cryptography [MSC 2020] 20Gxx - Linear algebraic groups and related topics [MSC 2020] 11Hxx - Geometry of numbers [MSC 2020] 11Mxx - Zeta and L-functions: analitic theory [MSC 2020] 14Gxx - Arithmetic problems in algebraic geometry; Diophantine geometry [MSC 2020] 11R04 - Algebraic numbers; rings of algebraic integers [MSC 2020] 11Zxx - Miscellaneous applications of number theory [MSC 2020] 08Axx - Algebraic structures [MSC 2020] 20Axx - Foundations [MSC 2020] |
Soggetto non controllato |
AKS algorithm
Cryptography Dirichlet's Theorem Elliptic curve cryptography Hensel's lemma Matrix theory Number theory Primality Testing Prime number theorem p-adic numbers |
ISBN | 978-33-19-43875-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0115103 |
Fine, Benjamin | ||
[Basel], : Birkhäuser, : Springer, 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Number theory : an introduction via the distribution of primes / Benjamin Fine, Gerhard Rosenberger |
Autore | Fine, Benjamin |
Edizione | [2. ed] |
Pubbl/distr/stampa | [Basel], : Birkhäuser, : Springer, 2016 |
Descrizione fisica | XIII, 413 p. : ill. ; 24 cm |
Altri autori (Persone) | Rosenberger, Gerhard |
Soggetto topico |
08Axx - Algebraic structures [MSC 2020]
11-XX - Number theory [MSC 2020] 11Axx - Elementary number theory [MSC 2020] 11Hxx - Geometry of numbers [MSC 2020] 11Mxx - Zeta and L-functions: analitic theory [MSC 2020] 11R04 - Algebraic numbers; rings of algebraic integers [MSC 2020] 11T71 Algebraic coding theory; cryptography [MSC 2020] 11Zxx - Miscellaneous applications of number theory [MSC 2020] 14Gxx - Arithmetic problems in algebraic geometry; Diophantine geometry [MSC 2020] 20Axx - Foundations [MSC 2020] 20Gxx - Linear algebraic groups and related topics [MSC 2020] |
Soggetto non controllato |
AKS algorithm
Cryptography Dirichlet's Theorem Elliptic curve cryptography Hensel's lemma Matrix theory Number theory Primality Testing Prime number theorem p-adic numbers |
ISBN | 978-33-19-43875-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00115103 |
Fine, Benjamin | ||
[Basel], : Birkhäuser, : Springer, 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Period Spaces for p-divisible Groups (AM-141), Volume 141 / / Thomas Zink, Michael Rapoport |
Autore | Rapoport Michael |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (347 pages) |
Disciplina | 512.2 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
p-divisible groups
Moduli theory p-adic groups |
Soggetto non controllato |
Abelian variety
Addition Alexander Grothendieck Algebraic closure Algebraic number field Algebraic space Algebraically closed field Artinian ring Automorphism Base change Basis (linear algebra) Big O notation Bilinear form Canonical map Cohomology Cokernel Commutative algebra Commutative ring Complex multiplication Conjecture Covering space Degenerate bilinear form Diagram (category theory) Dimension (vector space) Dimension Duality (mathematics) Elementary function Epimorphism Equation Existential quantification Fiber bundle Field of fractions Finite field Formal scheme Functor Galois group General linear group Geometric invariant theory Hensel's lemma Homomorphism Initial and terminal objects Inner automorphism Integral domain Irreducible component Isogeny Isomorphism class Linear algebra Linear algebraic group Local ring Local system Mathematical induction Maximal ideal Maximal torus Module (mathematics) Moduli space Monomorphism Morita equivalence Morphism Multiplicative group Noetherian ring Open set Orthogonal basis Orthogonal complement Orthonormal basis P-adic number Parity (mathematics) Period mapping Prime element Prime number Projective line Projective space Quaternion algebra Reductive group Residue field Rigid analytic space Semisimple algebra Sheaf (mathematics) Shimura variety Special case Subalgebra Subgroup Subset Summation Supersingular elliptic curve Support (mathematics) Surjective function Symmetric bilinear form Symmetric space Tate module Tensor algebra Tensor product Theorem Topological ring Topology Torsor (algebraic geometry) Uniformization theorem Uniformization Unitary group Weil group Zariski topology |
ISBN | 1-4008-8260-5 |
Classificazione | SI 830 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Introduction -- 1. p-adic symmetric domains -- 2. Quasi-isogenies of p-divisible groups -- 3. Moduli spaces of p-divisible groups -- Appendix: Normal forms of lattice chains -- 4. The formal Hecke correspondences -- 5. The period morphism and the rigid-analytic coverings -- 6. The p-adic uniformization of Shimura varieties -- Bibliography -- Index |
Record Nr. | UNINA-9910154754603321 |
Rapoport Michael | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|