Euler systems / / by Karl Rubin |
Autore | Rubin Karl |
Pubbl/distr/stampa | Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 |
Descrizione fisica | 1 online resource (241 p.) |
Disciplina | 512/.74 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Algebraic number theory
p-adic numbers |
Soggetto non controllato |
Abelian extension
Abelian variety Absolute Galois group Algebraic closure Barry Mazur Big O notation Birch and Swinnerton-Dyer conjecture Cardinality Class field theory Coefficient Cohomology Complex multiplication Conjecture Corollary Cyclotomic field Dimension (vector space) Divisibility rule Eigenvalues and eigenvectors Elliptic curve Error term Euler product Euler system Exact sequence Existential quantification Field of fractions Finite set Functional equation Galois cohomology Galois group Galois module Gauss sum Global field Heegner point Ideal class group Integer Inverse limit Inverse system Karl Rubin Local field Mathematical induction Maximal ideal Modular curve Modular elliptic curve Natural number Orthogonality P-adic number Pairing Principal ideal R-factor (crystallography) Ralph Greenberg Remainder Residue field Ring of integers Scientific notation Selmer group Subgroup Tate module Taylor series Tensor product Theorem Upper and lower bounds Victor Kolyvagin |
ISBN |
0-691-05075-9
1-4008-6520-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index |
Record Nr. | UNINA-9910786510103321 |
Rubin Karl
![]() |
||
Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Euler systems / / by Karl Rubin |
Autore | Rubin Karl |
Pubbl/distr/stampa | Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 |
Descrizione fisica | 1 online resource (241 p.) |
Disciplina | 512/.74 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Algebraic number theory
p-adic numbers |
Soggetto non controllato |
Abelian extension
Abelian variety Absolute Galois group Algebraic closure Barry Mazur Big O notation Birch and Swinnerton-Dyer conjecture Cardinality Class field theory Coefficient Cohomology Complex multiplication Conjecture Corollary Cyclotomic field Dimension (vector space) Divisibility rule Eigenvalues and eigenvectors Elliptic curve Error term Euler product Euler system Exact sequence Existential quantification Field of fractions Finite set Functional equation Galois cohomology Galois group Galois module Gauss sum Global field Heegner point Ideal class group Integer Inverse limit Inverse system Karl Rubin Local field Mathematical induction Maximal ideal Modular curve Modular elliptic curve Natural number Orthogonality P-adic number Pairing Principal ideal R-factor (crystallography) Ralph Greenberg Remainder Residue field Ring of integers Scientific notation Selmer group Subgroup Tate module Taylor series Tensor product Theorem Upper and lower bounds Victor Kolyvagin |
ISBN |
0-691-05075-9
1-4008-6520-4 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index |
Record Nr. | UNINA-9910816804403321 |
Rubin Karl
![]() |
||
Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
The Gross-Zagier formula on Shimura curves [[electronic resource] /] / Xinyi Yuan, Shou-wu Zhang, and Wei Zhang |
Autore | Yuan Xinyi <1981-> |
Edizione | [Course Book] |
Pubbl/distr/stampa | Princeton, : Princeton University Press, 2012, c2013 |
Descrizione fisica | 1 online resource (267 p.) |
Disciplina | 516.3/52 |
Altri autori (Persone) |
ZhangShouwu
ZhangWei <1981-> |
Collana | Annals of mathematics studies |
Soggetto topico |
Shimura varieties
Arithmetical algebraic geometry Automorphic forms Quaternions |
Soggetto non controllato |
Arakelov theory
Benedict Gross Don Zagier EichlerГhimura theory Eisenstein series GrossКagier formula Heegner point Hodge bundle Hodge index theorem L-series MordellЗeil group NeronДate height RankinГelberg L-function Schwartz function Shimizu lifting Shimura curve Shimura curves SiegelЗeil formula Waldspurger formula Weil representation abelian varieties analytic kernel function analytic kernel degenerate Schwartz function discrete series generating series geometric kernel height series holomorphic kernel function holomorphic projection incoherent Eisenstein series incoherent automorphic representation incoherent quaternion algebra kernel function kernel identity local height modular curve modularity multiplicity function non-archimedean local field non-degenerate quadratic space ordinary component orthogonal space projector pull-back formula ramified quadratic extension supersingular component superspecial component theta function theta liftings theta series trace identity un-normalized kernel function unramified quadratic extension |
ISBN |
9786613883919
1-4008-4564-5 1-283-57146-3 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Preface -- Chapter One. Introduction and Statement of Main Results -- Chapter Two. Weil Representation and Waldspurger Formula -- Chapter Three. Mordell-Weil Groups and Generating Series -- Chapter Four. Trace of the Generating Series -- Chapter Five. Assumptions on the Schwartz Function -- Chapter Six. Derivative of the Analytic Kernel -- Chapter Seven. Decomposition of the Geometric Kernel -- Chapter Eight. Local Heights of CM Points -- Bibliography -- Index |
Record Nr. | UNINA-9910790961403321 |
Yuan Xinyi <1981->
![]() |
||
Princeton, : Princeton University Press, 2012, c2013 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|