top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
1 : 1982. XII, 434 p.
1 : 1982. XII, 434 p.
Autore Suzuki, Michio
Pubbl/distr/stampa New York : Springer-Verlag, 1982-1986
Descrizione fisica 2 v. (1055 p. compless.) 24 cm
Disciplina 512.22
Collana Grund lehren der mathematischen Wissenschaften
Soggetto non controllato Group Theory
ISBN 0-387-10916-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ita
Record Nr. UNINA-990000871840403321
Suzuki, Michio  
New York : Springer-Verlag, 1982-1986
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
2 : 1986. X, 621 p.
2 : 1986. X, 621 p.
Autore Suzuki, Michio
Pubbl/distr/stampa New York : Springer-Verlag, 1982-1986
Descrizione fisica 2 v. (1055 p. compless.) 24 cm
Disciplina 512.22
Collana Grund lehren der mathematischen Wissenschaften
Soggetto non controllato Group Theory
ISBN 0-387-10916-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ita
Record Nr. UNINA-990000871850403321
Suzuki, Michio  
New York : Springer-Verlag, 1982-1986
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Groups of prime power order . Volume 3 [[electronic resource] /] / Yakov Berkovich, Zvonimir Janko
Groups of prime power order . Volume 3 [[electronic resource] /] / Yakov Berkovich, Zvonimir Janko
Autore Berkovich I͡A. G. <1938->
Pubbl/distr/stampa Berlin, : De Gruyter, 2011
Descrizione fisica 1 online resource (668 p.)
Disciplina 512/.23
Altri autori (Persone) JankoZvonimir <1932->
Collana De Gruyter expositions in mathematics
Groups of prime power order
Soggetto topico Finite groups
Group theory
Soggetto non controllato Group Theory
Order
Primes
ISBN 1-283-40037-5
9786613400376
3-11-025448-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- List of definitions and notations -- Preface -- Prerequisites from Volumes 1 and 2 -- §93 Nonabelian 2-groups all of whose minimal nonabelian subgroups are metacyclic and have exponent 4 -- §94 Nonabelian 2-groups all of whose minimal nonabelian subgroups are nonmetacyclic and have exponent 4 -- §95 Nonabelian 2-groups of exponent 2e which have no minimal nonabelian subgroups of exponent 2e -- §96 Groups with at most two conjugate classes of nonnormal subgroups -- §97 p-groups in which some subgroups are generated by elements of order p -- §98 Nonabelian 2-groups all of whose minimal nonabelian subgroups are isomorphic to M2n+1, n 3 fixed -- §99 2-groups with sectional rank at most 4 -- §100 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelian -- §101 p-groups G with p > 2 and d(G) = 2 having exactly one maximal subgroup which is neither abelian nor minimal nonabelian -- §102 p-groups G with p > 2 and d(G) > 2 having exactly one maximal subgroup which is neither abelian nor minimal nonabelian -- §103 Some results of Jonah and Konvisser -- §104 Degrees of irreducible characters of p-groups associated with finite algebras -- §105 On some special p-groups -- §106 On maximal subgroups of two-generator 2-groups -- §107 Ranks of maximal subgroups of nonmetacyclic two-generator 2-groups -- §108 p-groups with few conjugate classes of minimal nonabelian subgroups -- §109 On p-groups with metacyclic maximal subgroup without cyclic subgroup of index p -- §110 Equilibrated p-groups -- §111 Characterization of abelian and minimal nonabelian groups -- §112 Non-Dedekindian p-groups all of whose nonnormal subgroups have the same order -- §113 The class of 2-groups in §70 is not bounded -- §114 Further counting theorems -- §115 Finite p-groups all of whose maximal subgroups except one are extraspecial -- §116 Groups covered by few proper subgroups -- §117 2-groups all of whose nonnormal subgroups are either cyclic or of maximal class -- §118 Review of characterizations of p-groups with various minimal nonabelian subgroups -- §119 Review of characterizations of p-groups of maximal class -- §120 Nonabelian 2-groups such that any two distinct minimal nonabelian subgroups have cyclic intersection -- §121 p-groups of breadth 2 -- §122 p-groups all of whose subgroups have normalizers of index at most p -- §123 Subgroups of finite groups generated by all elements in two shortest conjugacy classes -- §124 The number of subgroups of given order in a metacyclic p-group -- §125 p-groups G containing a maximal subgroup H all of whose subgroups are G-invariant -- §126 The existence of p-groups G1 G such that Aut(G1) Aut(G) -- §127 On 2-groups containing a maximal elementary abelian subgroup of order 4 -- §128 The commutator subgroup of p-groups with the subgroup breadth 1 -- §129 On two-generator 2-groups with exactly one maximal subgroup which is not two-generator -- §130 Soft subgroups of p-groups -- §131 p-groups with a 2-uniserial subgroup of order p -- §132 On centralizers of elements in p-groups -- §133 Class and breadth of a p-group -- §134 On p-groups with maximal elementary abelian subgroup of order p2 -- §135 Finite p-groups generated by certain minimal nonabelian subgroups -- §136 p-groups in which certain proper nonabelian subgroups are two-generator -- §137 p-groups all of whose proper subgroups have its derived subgroup of order at most p -- §138 p-groups all of whose nonnormal subgroups have the smallest possible normalizer -- §139 p-groups with a noncyclic commutator group all of whose proper subgroups have a cyclic commutator group -- §140 Power automorphisms and the norm of a p-group -- §141 Nonabelian p-groups having exactly one maximal subgroup with a noncyclic center -- §142 Nonabelian p-groups all of whose nonabelian maximal subgroups are either metacyclic or minimal nonabelian -- §143 Alternate proof of the Reinhold Baer theorem on 2-groups with nonabelian norm -- §144 p-groups with small normal closures of all cyclic subgroups -- Appendix 27 Wreathed 2-groups -- Appendix 28 Nilpotent subgroups -- Appendix 29 Intersections of subgroups -- Appendix 30 Thompson's lemmas -- Appendix 31 Nilpotent p'-subgroups of class 2 in GL(n, p) -- Appendix 32 On abelian subgroups of given exponent and small index -- Appendix 33 On Hadamard 2-groups -- Appendix 34 Isaacs-Passman's theorem on character degrees -- Appendix 35 Groups of Frattini class 2 -- Appendix 36 Hurwitz' theorem on the composition of quadratic forms -- Appendix 37 On generalized Dedekindian groups -- Appendix 38 Some results of Blackburn and Macdonald -- Appendix 39 Some consequences of Frobenius' normal p-complement theorem -- Appendix 40 Varia -- Appendix 41 Nonabelian 2-groups all of whose minimal nonabelian subgroups have cyclic centralizers -- Appendix 42 On lattice isomorphisms of p-groups of maximal class -- Appendix 43 Alternate proofs of two classical theorems on solvable groups and some related results -- Appendix 44 Some of Freiman's results on finite subsets of groups with small doubling -- Research problems and themes III -- Author index -- Subject index
Record Nr. UNINA-9910781509103321
Berkovich I͡A. G. <1938->  
Berlin, : De Gruyter, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Groups of prime power order . Volume 3 / / Yakov Berkovich, Zvonimir Janko
Groups of prime power order . Volume 3 / / Yakov Berkovich, Zvonimir Janko
Autore Berkovich I͡A. G. <1938->
Edizione [1st ed.]
Pubbl/distr/stampa Berlin, : De Gruyter, 2011
Descrizione fisica 1 online resource (668 p.)
Disciplina 512/.23
Altri autori (Persone) JankoZvonimir <1932->
Collana De Gruyter expositions in mathematics
Groups of prime power order
Soggetto topico Finite groups
Group theory
Soggetto non controllato Group Theory
Order
Primes
ISBN 1-283-40037-5
9786613400376
3-11-025448-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- List of definitions and notations -- Preface -- Prerequisites from Volumes 1 and 2 -- §93 Nonabelian 2-groups all of whose minimal nonabelian subgroups are metacyclic and have exponent 4 -- §94 Nonabelian 2-groups all of whose minimal nonabelian subgroups are nonmetacyclic and have exponent 4 -- §95 Nonabelian 2-groups of exponent 2e which have no minimal nonabelian subgroups of exponent 2e -- §96 Groups with at most two conjugate classes of nonnormal subgroups -- §97 p-groups in which some subgroups are generated by elements of order p -- §98 Nonabelian 2-groups all of whose minimal nonabelian subgroups are isomorphic to M2n+1, n 3 fixed -- §99 2-groups with sectional rank at most 4 -- §100 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelian -- §101 p-groups G with p > 2 and d(G) = 2 having exactly one maximal subgroup which is neither abelian nor minimal nonabelian -- §102 p-groups G with p > 2 and d(G) > 2 having exactly one maximal subgroup which is neither abelian nor minimal nonabelian -- §103 Some results of Jonah and Konvisser -- §104 Degrees of irreducible characters of p-groups associated with finite algebras -- §105 On some special p-groups -- §106 On maximal subgroups of two-generator 2-groups -- §107 Ranks of maximal subgroups of nonmetacyclic two-generator 2-groups -- §108 p-groups with few conjugate classes of minimal nonabelian subgroups -- §109 On p-groups with metacyclic maximal subgroup without cyclic subgroup of index p -- §110 Equilibrated p-groups -- §111 Characterization of abelian and minimal nonabelian groups -- §112 Non-Dedekindian p-groups all of whose nonnormal subgroups have the same order -- §113 The class of 2-groups in §70 is not bounded -- §114 Further counting theorems -- §115 Finite p-groups all of whose maximal subgroups except one are extraspecial -- §116 Groups covered by few proper subgroups -- §117 2-groups all of whose nonnormal subgroups are either cyclic or of maximal class -- §118 Review of characterizations of p-groups with various minimal nonabelian subgroups -- §119 Review of characterizations of p-groups of maximal class -- §120 Nonabelian 2-groups such that any two distinct minimal nonabelian subgroups have cyclic intersection -- §121 p-groups of breadth 2 -- §122 p-groups all of whose subgroups have normalizers of index at most p -- §123 Subgroups of finite groups generated by all elements in two shortest conjugacy classes -- §124 The number of subgroups of given order in a metacyclic p-group -- §125 p-groups G containing a maximal subgroup H all of whose subgroups are G-invariant -- §126 The existence of p-groups G1 G such that Aut(G1) Aut(G) -- §127 On 2-groups containing a maximal elementary abelian subgroup of order 4 -- §128 The commutator subgroup of p-groups with the subgroup breadth 1 -- §129 On two-generator 2-groups with exactly one maximal subgroup which is not two-generator -- §130 Soft subgroups of p-groups -- §131 p-groups with a 2-uniserial subgroup of order p -- §132 On centralizers of elements in p-groups -- §133 Class and breadth of a p-group -- §134 On p-groups with maximal elementary abelian subgroup of order p2 -- §135 Finite p-groups generated by certain minimal nonabelian subgroups -- §136 p-groups in which certain proper nonabelian subgroups are two-generator -- §137 p-groups all of whose proper subgroups have its derived subgroup of order at most p -- §138 p-groups all of whose nonnormal subgroups have the smallest possible normalizer -- §139 p-groups with a noncyclic commutator group all of whose proper subgroups have a cyclic commutator group -- §140 Power automorphisms and the norm of a p-group -- §141 Nonabelian p-groups having exactly one maximal subgroup with a noncyclic center -- §142 Nonabelian p-groups all of whose nonabelian maximal subgroups are either metacyclic or minimal nonabelian -- §143 Alternate proof of the Reinhold Baer theorem on 2-groups with nonabelian norm -- §144 p-groups with small normal closures of all cyclic subgroups -- Appendix 27 Wreathed 2-groups -- Appendix 28 Nilpotent subgroups -- Appendix 29 Intersections of subgroups -- Appendix 30 Thompson's lemmas -- Appendix 31 Nilpotent p'-subgroups of class 2 in GL(n, p) -- Appendix 32 On abelian subgroups of given exponent and small index -- Appendix 33 On Hadamard 2-groups -- Appendix 34 Isaacs-Passman's theorem on character degrees -- Appendix 35 Groups of Frattini class 2 -- Appendix 36 Hurwitz' theorem on the composition of quadratic forms -- Appendix 37 On generalized Dedekindian groups -- Appendix 38 Some results of Blackburn and Macdonald -- Appendix 39 Some consequences of Frobenius' normal p-complement theorem -- Appendix 40 Varia -- Appendix 41 Nonabelian 2-groups all of whose minimal nonabelian subgroups have cyclic centralizers -- Appendix 42 On lattice isomorphisms of p-groups of maximal class -- Appendix 43 Alternate proofs of two classical theorems on solvable groups and some related results -- Appendix 44 Some of Freiman's results on finite subsets of groups with small doubling -- Research problems and themes III -- Author index -- Subject index
Record Nr. UNINA-9910828489603321
Berkovich I͡A. G. <1938->  
Berlin, : De Gruyter, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Groups of prime power order . Volume 1 [[electronic resource] /] / by Yakov Berkovich
Groups of prime power order . Volume 1 [[electronic resource] /] / by Yakov Berkovich
Autore Berkovich Yakov
Pubbl/distr/stampa Berlin ; ; New York, : W. de Gruyter, c2008
Descrizione fisica 1 online resource (532 p.)
Disciplina 512.23
Collana De Gruyter expositions in mathematics
Soggetto topico Finite groups
Group theory
Soggetto non controllato Group Theory
Order
Primes
ISBN 1-281-99347-6
9786611993474
3-11-020822-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- List of definitions and notations -- Foreword -- Preface -- Introduction -- §1. Groups with a cyclic subgroup of index p. Frattini subgroup. Varia -- §2. The class number, character degrees -- §3. Minimal classes -- §4. p-groups with cyclic Frattini subgroup -- §5. Hall's enumeration principle -- §6. q'-automorphisms of q-groups -- §7. Regular p-groups -- §8. Pyramidal p-groups -- §9. On p-groups of maximal class -- §10. On abelian subgroups of p-groups -- §11. On the power structure of a p-group -- §12. Counting theorems for p-groups of maximal class -- §13. Further counting theorems -- §14. Thompson's critical subgroup -- §15. Generators of p-groups -- §16. Classification of finite p-groups all of whose noncyclic subgroups are normal -- §17. Counting theorems for regular p-groups -- §18. Counting theorems for irregular p-groups -- §19. Some additional counting theorems -- §20. Groups with small abelian subgroups and partitions -- §21. On the Schur multiplier and the commutator subgroup -- §22. On characters of p-groups -- §23. On subgroups of given exponent -- §24. Hall's theorem on normal subgroups of given exponent -- §25. On the lattice of subgroups of a group -- §26. Powerful p-groups -- §27. p-groups with normal centralizers of all elements -- §28. p-groups with a uniqueness condition for nonnormal subgroups -- §29. On isoclinism -- §30. On p-groups with few nonabelian subgroups of order pp and exponent p -- §31. On p-groups with small p0-groups of operators -- §32. W. Gaschütz's and P. Schmid's theorems on p-automorphisms of p-groups -- §33. Groups of order pm with automorphisms of order pm-1, pm-2 or pm-3 -- §34. Nilpotent groups of automorphisms -- §35. Maximal abelian subgroups of p-groups -- §36. Short proofs of some basic characterization theorems of finite p-group theory -- §37. MacWilliams' theorem -- §38. p-groups with exactly two conjugate classes of subgroups of small orders and exponentp > 2 -- §39. Alperin's problem on abelian subgroups of small index -- §40. On breadth and class number of p-groups -- §41. Groups in which every two noncyclic subgroups of the same order have the same rank -- §42. On intersections of some subgroups -- §43. On 2-groups with few cyclic subgroups of given order -- §44. Some characterizations of metacyclic p-groups -- §45. A counting theorem for p-groups of odd order -- Appendix 1. The Hall-Petrescu formula -- Appendix 2. Mann's proof of monomiality of p-groups -- Appendix 3. Theorems of Isaacs on actions of groups -- Appendix 4. Freiman's number-theoretical theorems -- Appendix 5. Another proof of Theorem 5.4 -- Appendix 6. On the order of p-groups of given derived length -- Appendix 7. Relative indices of elements of p-groups -- Appendix 8. p-groups withabsolutely regular Frattini subgroup -- Appendix 9. On characteristic subgroups of metacyclic groups -- Appendix 10. On minimal characters of p-groups -- Appendix 11. On sums of degrees of irreducible characters -- Appendix 12. 2-groups whose maximal cyclic subgroups of order > 2 are self-centralizing -- Appendix 13. Normalizers of Sylow p-subgroups of symmetric groups -- Appendix 14. 2-groups with an involution contained in only one subgroup of order 4 -- Appendix 15. A criterion for a group to be nilpotent -- Research problems and themes I -- Backmatter
Record Nr. UNINA-9910782769703321
Berkovich Yakov  
Berlin ; ; New York, : W. de Gruyter, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Groups of prime power order . Volume 2 [[electronic resource] /] / by Yakov Berkovich and Zvonimir Janko
Groups of prime power order . Volume 2 [[electronic resource] /] / by Yakov Berkovich and Zvonimir Janko
Autore Berkovich Yakov
Pubbl/distr/stampa Berlin ; ; New York, : W. de Gruyter, c2008
Descrizione fisica 1 online resource (612 p.)
Disciplina 512.23
Altri autori (Persone) JankoZvonimir
Collana De Gruyter expositions in mathematics
Soggetto topico Finite groups
Group theory
Soggetto non controllato Group Theory
Order
Primes
ISBN 1-281-99348-4
9786611993481
3-11-916239-6
3-11-020823-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- List of definitions and notations -- Preface -- §46. Degrees of irreducible characters of Suzuki p-groups -- §47. On the number of metacyclic epimorphic images of finite p-groups -- §48. On 2-groups with small centralizer of an involution, I -- §49. On 2-groups with small centralizer of an involution, II -- §50. Janko's theorem on 2-groups without normal elementary abelian subgroups of order 8 -- §51. 2-groups with self centralizing subgroup isomorphic to E8 -- §52. 2-groups with 2-subgroup of small order -- §53. 2-groups G with c2(G) = 4 -- §54. 2-groups G with cn(G) = 4, n > 2 -- §55. 2-groups G with small subgroup (x ∈ G | o(x) = 2") -- §56. Theorem of Ward on quaternion-free 2-groups -- §57. Nonabelian 2-groups all of whose minimal nonabelian subgroups are isomorphic and have exponent 4 -- §58. Non-Dedekindian p-groups all of whose nonnormal subgroups of the same order are conjugate -- §59. p-groups with few nonnormal subgroups -- §60. The structure of the Burnside group of order 212 -- §61. Groups of exponent 4 generated by three involutions -- §62. Groups with large normal closures of nonnormal cyclic subgroups -- §63. Groups all of whose cyclic subgroups of composite orders are normal -- §64. p-groups generated by elements of given order -- §65. A2-groups -- §66. A new proof of Blackburn's theorem on minimal nonmetacyclic 2-groups -- §67. Determination of U2-groups -- §68. Characterization of groups of prime exponent -- §69. Elementary proofs of some Blackburn's theorems -- §70. Non-2-generator p-groups all of whose maximal subgroups are 2-generator -- §71. Determination of A2-groups -- §72. An-groups, n > 2 -- §73. Classification of modular p-groups -- §74. p-groups with a cyclic subgroup of index p2 -- §75. Elements of order ≤ in p-groups -- §76. p-groups with few A1-subgroups -- §77. 2-groups with a self-centralizing abelian subgroup of type (4, 2) -- §78. Minimal nonmodular p-groups -- §79. Nonmodular quaternion-free 2-groups -- §80. Minimal non-quaternion-free 2-groups -- §81. Maximal abelian subgroups in 2-groups -- §82. A classification of 2-groups with exactly three involutions -- §83. p-groups G with Ω2(G) or Ω2*(G) extraspecial -- §84. 2-groups whose nonmetacyclic subgroups are generated by involutions -- §85. 2-groups with a nonabelian Frattini subgroup of order 16 -- §86. p-groups G with metacyclic Ω2*(G) -- §87. 2-groups with exactly one nonmetacyclic maximal subgroup -- §88. Hall chains in normal subgroups of p-groups -- §89. 2-groups with exactly six cyclic subgroups of order 4 -- §90. Nonabelian 2-groups all of whose minimal nonabelian subgroups are of order 8 -- §91. Maximal abelian subgroups of p-groups -- §92. On minimal nonabelian subgroups of p-groups -- Appendix 16. Some central products -- Appendix 17. Alternate proofs of characterization theorems of Miller and Janko on 2-groups, and some related results -- Appendix 18. Replacement theorems -- Appendix 19. New proof of Ward's theorem on quaternion-free 2-groups -- Appendix 20. Some remarks on automorphisms -- Appendix 21. Isaacs' examples -- Appendix 22. Minimal nonnilpotent groups -- Appendix 23. Groups all of whose noncentral conjugacy classes have the same size -- Appendix 24. On modular 2-groups -- Appendix 25. Schreier's inequality for p-groups -- Appendix 26. p-groups all of whose nonabelian maximal subgroups are either absolutely regular or of maximal class -- Research problems and themes II -- Backmatter
Record Nr. UNINA-9910782769603321
Berkovich Yakov  
Berlin ; ; New York, : W. de Gruyter, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
An Introduction to Smooth Manifolds / / by Manjusha Majumdar, Arindam Bhattacharyya
An Introduction to Smooth Manifolds / / by Manjusha Majumdar, Arindam Bhattacharyya
Autore Majumdar Manjusha
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (219 pages)
Disciplina 516.07
Soggetto topico Geometry, Differential
Global analysis (Mathematics)
Manifolds (Mathematics)
Topological groups
Lie groups
Differential Geometry
Global Analysis and Analysis on Manifolds
Topological Groups and Lie Groups
Varietats (Matemàtica)
Soggetto genere / forma Llibres electrònics
Soggetto non controllato Mathematical Analysis
Group Theory
Geometry, Differential
Mathematics
ISBN 981-9905-65-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Calculus on Rn -- 2. Manifold Theory -- 3. Differential Forms -- 4. Lie Group.
Record Nr. UNINA-9910728952903321
Majumdar Manjusha  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Products of finite groups [[electronic resource] /] / by Adolfo Ballester-Bolinches, Ramon Esteban-Romero, Mohamed Asaad
Products of finite groups [[electronic resource] /] / by Adolfo Ballester-Bolinches, Ramon Esteban-Romero, Mohamed Asaad
Autore Ballester-Bolinches Adolfo
Pubbl/distr/stampa New York, : De Gruyter, c2010
Descrizione fisica 1 online resource (346 p.)
Disciplina 512/.23
Altri autori (Persone) Esteban-RomeroRamon
AsaadMohamed
Collana De Gruyter expositions in mathematics
Soggetto topico Finite groups
Group theory
Soggetto non controllato Cryptology
Group Theory
Product Spaces
ISBN 1-282-91226-7
9786612912269
3-11-022061-X
Classificazione SK 260
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Chapter 1. Prerequisites -- Chapter 2. Groups whose subnormal subgroups are normal, permutable, or Sylow-permutable -- Chapter 3. Products of nilpotent groups -- Chapter 4. Totally and mutually permutable products of groups - structural results -- Chapter 5.Totally and mutually permutable products and classes of groups -- Backmatter
Record Nr. UNINA-9910791683003321
Ballester-Bolinches Adolfo  
New York, : De Gruyter, c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui