top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Energy Development for Sustainability
Energy Development for Sustainability
Autore Chen Wei-Hsin
Pubbl/distr/stampa Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 online resource (310 p.)
Soggetto topico History of engineering and technology
Technology: general issues
Soggetto non controllato adsorption
air conditioner
algae
ASEAN
battery energy storage system
biochar
bioenergy
biofuel production
biomass
biomass and bioenergy
biomass waste
carbon composite
carbon dioxide
carbon particles
characteristic
clean energy incubator
climate change
CO2
CO2 emissions
coal regulation
coconut shell husk
cooling load
core competitiveness evaluation
COVID-19
degraded empty fruit bunch
delignification
demand bidding program
direct search method
electro-catalyst
emissions
energy system
energy use
environmental benefits
environmental policy
fossil fuel
fractionation
g-C3N4
Google Maps
health benefits
heat conduction
internal-cell spacing
KPCA
life cycle assessment
light reflection
light trapping
LMDI decomposition
LSSVM
malachite green
Malaysia
matter-element extension
metal-air battery
metal-organic framework
microalgae
MIL-101
modeling
multi-objective optimization
NSGA-II
organic solvent
organosolv pretreatment
particle swarm optimization (PSO)
Philippines
pollution abatement
residential building
roof insulation
roof tile color
sludge
smart grid
solar reflectance
solvent free
sonocatalytic degradation
sorghum distilled residue
spatial LMDI
spatiotemporal analysis
thermogravimetric analysis
time-of-use
TOPSIS
torrefaction kinetics
transport
transportation
vehicle flow
wastewater
zero-depth concentrator
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910576877603321
Chen Wei-Hsin  
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Flood Forecasting Using Machine Learning Methods
Flood Forecasting Using Machine Learning Methods
Autore Chang Fi-John
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 online resource (376 p.)
Soggetto topico History of engineering and technology
Soggetto non controllato adaptive neuro-fuzzy inference system (ANFIS)
ANFIS
ANN
ANN-based models
artificial intelligence
artificial neural network
artificial neural networks
backtracking search optimization algorithm (BSA)
bat algorithm
bees algorithm
big data
classification and regression trees (CART)
convolutional neural networks
cultural algorithm
data assimilation
data forward prediction
data scarce basins
data science
database
decision tree
deep learning
disasters
Dongting Lake
early flood warning systems
empirical wavelet transform
ensemble empirical mode decomposition (EEMD)
ensemble machine learning
ensemble technique
extreme event management
extreme learning machine (ELM)
flash-flood
flood events
flood forecast
flood forecasting
flood inundation map
flood prediction
flood routing
flood susceptibility modeling
forecasting
Google Maps
Haraz watershed
high-resolution remote-sensing images
hybrid &
hybrid neural network
hydrograph predictions
hydroinformatics
hydrologic model
hydrologic models
hydrometeorology
improved bat algorithm
invasive weed optimization
Karahan flood
lag analysis
Lower Yellow River
LSTM
LSTM network
machine learning
machine learning methods
method of tracking energy differences (MTED)
micro-model
monthly streamflow forecasting
Muskingum model
natural hazards &
nonlinear Muskingum model
optimization
parameters
particle filter algorithm
particle swarm optimization
phase space reconstruction
postprocessing
precipitation-runoff
rainfall-runoff
random forest
rating curve method
real-time
recurrent nonlinear autoregressive with exogenous inputs (RNARX)
runoff series
self-organizing map
self-organizing map (SOM)
sensitivity
soft computing
St. Venant equations
stopping criteria
streamflow predictions
superpixel
support vector machine
survey
the Three Gorges Dam
the upper Yangtze River
time series prediction
uncertainty
urban water bodies
water level forecast
Wilson flood
wolf pack algorithm
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910346688303321
Chang Fi-John  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui