top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images
Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images
Autore Bazi Yakoub
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (438 p.)
Soggetto topico Research & information: general
Soggetto non controllato synthetic aperture radar
despeckling
multi-scale
LSTM
sub-pixel
high-resolution remote sensing imagery
road extraction
machine learning
DenseUNet
scene classification
lifting scheme
convolution
CNN
image classification
deep features
hand-crafted features
Sinkhorn loss
remote sensing
text image matching
triplet networks
EfficientNets
LSTM network
convolutional neural network
water identification
water index
semantic segmentation
high-resolution remote sensing image
pixel-wise classification
result correction
conditional random field (CRF)
satellite
object detection
neural networks
single-shot
deep learning
global convolution network
feature fusion
depthwise atrous convolution
high-resolution representations
ISPRS vaihingen
Landsat-8
faster region-based convolutional neural network (FRCNN)
single-shot multibox detector (SSD)
super-resolution
remote sensing imagery
edge enhancement
satellites
open-set domain adaptation
adversarial learning
min-max entropy
pareto ranking
SAR
Sentinel–1
Open Street Map
U–Net
desert
road
infrastructure
mapping
monitoring
deep convolutional networks
outline extraction
misalignments
nearest feature selector
hyperspectral image classification
two stream residual network
Batch Normalization
plant disease detection
precision agriculture
UAV multispectral images
orthophotos registration
3D information
orthophotos segmentation
wildfire detection
convolutional neural networks
densenet
generative adversarial networks
CycleGAN
data augmentation
pavement markings
visibility
framework
urban forests
OUDN algorithm
object-based
high spatial resolution remote sensing
Generative Adversarial Networks
post-disaster
building damage assessment
anomaly detection
Unmanned Aerial Vehicles (UAV)
xBD
feature engineering
orthophoto
unsupervised segmentation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557747903321
Bazi Yakoub  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Generative Adversarial Networks for Image Generation / Xudong Mao, Qing Li
Generative Adversarial Networks for Image Generation / Xudong Mao, Qing Li
Autore Mao, Xudong
Pubbl/distr/stampa Singapore, : Springer, 2021
Descrizione fisica xii, 77 p. : ill. ; 24 cm
Altri autori (Persone) Li, Qing
Soggetto topico 68-XX - Computer science [MSC 2020]
68T07 - Artificial neural networks and deep learning [MSC 2020]
Soggetto non controllato Adversarial Networks
Deep Learning
Generative Adversarial Networks
Generative models
Image Generation
Image to Image Translation
Machine learning
Neural networks
Unsupervised Domain Adaptation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0275456
Mao, Xudong  
Singapore, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Generative Adversarial Networks for Image Generation / Xudong Mao, Qing Li
Generative Adversarial Networks for Image Generation / Xudong Mao, Qing Li
Autore Mao, Xudong
Pubbl/distr/stampa Singapore, : Springer, 2021
Descrizione fisica xii, 77 p. : ill. ; 24 cm
Altri autori (Persone) Li, Qing
Soggetto topico 68-XX - Computer science [MSC 2020]
68T07 - Artificial neural networks and deep learning [MSC 2020]
Soggetto non controllato Adversarial Networks
Deep Learning
Generative Adversarial Networks
Generative models
Image Generation
Image to Image Translation
Machine learning
Neural networks
Unsupervised Domain Adaptation
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00275456
Mao, Xudong  
Singapore, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Machine Learning Applications in Electronic Design Automation / Haoxing Ren, Jiang Hu editors
Machine Learning Applications in Electronic Design Automation / Haoxing Ren, Jiang Hu editors
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica xii, 583 p. : ill. ; 24 cm
Soggetto topico 94-XX - Information and communication theory, circuits [MSC 2020]
94Cxx - Circuits, networks [MSC 2020]
Soggetto non controllato Convolutional Neural Networks
Deep learning for EDA
Generative Adversarial Networks
Graph neural networks
Reinforcement Learning
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0277814
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Machine Learning Applications in Electronic Design Automation / Haoxing Ren, Jiang Hu editors
Machine Learning Applications in Electronic Design Automation / Haoxing Ren, Jiang Hu editors
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica xii, 583 p. : ill. ; 24 cm
Soggetto topico 94-XX - Information and communication theory, circuits [MSC 2020]
94Cxx - Circuits, networks [MSC 2020]
Soggetto non controllato Convolutional Neural Networks
Deep learning for EDA
Generative Adversarial Networks
Graph neural networks
Reinforcement Learning
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00277814
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Machine Learning for Data Science Handbook : Data Mining and Knowledge Discovery Handbook / Lior Rokach, Oded Maimon, Erez Shmueli editors
Machine Learning for Data Science Handbook : Data Mining and Knowledge Discovery Handbook / Lior Rokach, Oded Maimon, Erez Shmueli editors
Edizione [3. ed]
Pubbl/distr/stampa Cham, : Springer, 2023
Descrizione fisica vii, 985 p. : ill. ; 24 cm
Soggetto topico 68-XX - Computer science [MSC 2020]
68T05 - Learning and adaptive systems in artificial intelligence [MSC 2020]
68T09 - Computational aspects of data analysis and big data [MSC 2020]
Soggetto non controllato Analytics
Artificial Intelligence
Autoencoder
Clustering
Data Mining
Data imputation
Data science
Decision Trees
Deep Learning
Dimensionality reduction
Ensemble Learning
Generative Adversarial Networks
Knowledge Discovery
Machine learning
Neural networks
Privacy Preserving
Recommender system
Text Mining
Web mining
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00278867
Cham, : Springer, 2023
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui