top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches / Antonio Lepore, Biagio Palumbo, Jean-Michel Poggi editors
Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches / Antonio Lepore, Biagio Palumbo, Jean-Michel Poggi editors
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica vii, 123 p. : ill. ; 24 cm
Soggetto topico 62-XX - Statistics [MSC 2020]
62P12 - Applications of statistics to environmental and related topics [MSC 2020]
62P20 - Applications of statistics to economics [MSC 2020]
62P30 - Applications of statistics in engineering and industry; control charts [MSC 2020]
62P35 - Applications of statistics to physics [MSC 2020]
Soggetto non controllato Additive Manufacturing Systems
Generalized additive models
Interpretability
Machine learning
Sensitivity
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0277671
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches / Antonio Lepore, Biagio Palumbo, Jean-Michel Poggi editors
Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches / Antonio Lepore, Biagio Palumbo, Jean-Michel Poggi editors
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica vii, 123 p. : ill. ; 24 cm
Soggetto topico 62-XX - Statistics [MSC 2020]
62P12 - Applications of statistics to environmental and related topics [MSC 2020]
62P20 - Applications of statistics to economics [MSC 2020]
62P30 - Applications of statistics in engineering and industry; control charts [MSC 2020]
62P35 - Applications of statistics to physics [MSC 2020]
Soggetto non controllato Additive Manufacturing Systems
Generalized additive models
Interpretability
Machine learning
Sensitivity
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00277671
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Mathematics of Public Health : Proceedings of the Seminar on the Mathematical Modelling of COVID-19 / V. Kumar Murty, Jianhong Wu editors
Mathematics of Public Health : Proceedings of the Seminar on the Mathematical Modelling of COVID-19 / V. Kumar Murty, Jianhong Wu editors
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica x, 353 p. : ill. ; 24 cm
Soggetto topico 00B25 - Proceedings of conferences of miscellaneous specific interest [MSC 2020]
92-XX - Biology and other natural sciences [MSC 2020]
92D30 - Epidemiology [MSC 2020]
Soggetto non controllato COVID-19 outbreak trajectories
COVID-19 pandemic research
Control measures
Data modeling
Fields math modelling taskforce
Forecasting COVID-19
Generalized Linear Models
Generalized additive models
Intermediate rank spline
Link functions
Mathematical methods COVID-19
Nearcasting COVID-19
Optimization
Plasma treatment COVID-19
Regression analysis
Reported and unreported cases
SEIR modeling
Semi-parametric Models
Statistical analysis
Transmission dynamics
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0277897
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Mathematics of Public Health : Proceedings of the Seminar on the Mathematical Modelling of COVID-19 / V. Kumar Murty, Jianhong Wu editors
Mathematics of Public Health : Proceedings of the Seminar on the Mathematical Modelling of COVID-19 / V. Kumar Murty, Jianhong Wu editors
Pubbl/distr/stampa Cham, : Springer, 2022
Descrizione fisica x, 353 p. : ill. ; 24 cm
Soggetto topico 00B25 - Proceedings of conferences of miscellaneous specific interest [MSC 2020]
92-XX - Biology and other natural sciences [MSC 2020]
92D30 - Epidemiology [MSC 2020]
Soggetto non controllato COVID-19 outbreak trajectories
COVID-19 pandemic research
Control measures
Data modeling
Fields math modelling taskforce
Forecasting COVID-19
Generalized Linear Models
Generalized additive models
Intermediate rank spline
Link functions
Mathematical methods COVID-19
Nearcasting COVID-19
Optimization
Plasma treatment COVID-19
Regression analysis
Reported and unreported cases
SEIR modeling
Semi-parametric Models
Statistical analysis
Transmission dynamics
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN00277897
Cham, : Springer, 2022
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Semiparametric Regression with R / Jaroslaw Harezlak, David Ruppert, Matt P. Wand
Semiparametric Regression with R / Jaroslaw Harezlak, David Ruppert, Matt P. Wand
Autore Harezlak, Jaroslaw
Pubbl/distr/stampa New York, : Springer, 2018
Descrizione fisica xi, 331 p. : ill. ; 24 cm
Altri autori (Persone) Ruppert, David
Wand, Matt P.
Soggetto topico 62-XX - Statistics [MSC 2020]
68N15 - Theory of programming languages [MSC 2020]
62Jxx - Linear inference, regression [MSC 2020]
Soggetto non controllato Bayesian semiparametric regression
Bivariate function extensions
Generalized additive models
Penalized spines
Regression analysis
Semiparametric regression analysis
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN0125104
Harezlak, Jaroslaw  
New York, : Springer, 2018
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Semiparametric Regression with R / Jaroslaw Harezlak, David Ruppert, Matt P. Wand
Semiparametric Regression with R / Jaroslaw Harezlak, David Ruppert, Matt P. Wand
Autore Harezlak, Jaroslaw
Pubbl/distr/stampa New York, : Springer, 2018
Descrizione fisica xi, 331 p. : ill. ; 24 cm
Altri autori (Persone) Ruppert, David
Wand, Matt P.
Soggetto topico 62-XX - Statistics [MSC 2020]
62Jxx - Linear inference, regression [MSC 2020]
68N15 - Theory of programming languages [MSC 2020]
Soggetto non controllato Bayesian semiparametric regression
Bivariate function extensions
Generalized additive models
Penalized spines
Regression analysis
Semiparametric regression analysis
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNICAMPANIA-VAN00125104
Harezlak, Jaroslaw  
New York, : Springer, 2018
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui