top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Computational Methods for the Analysis of Genomic Data and Biological Processes
Computational Methods for the Analysis of Genomic Data and Biological Processes
Autore Gómez Vela Francisco A
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (222 p.)
Soggetto topico Biology, life sciences
Research & information: general
Soggetto non controllato binding sites
bioinformatics
bioinformatics analysis
CAMTA1
cancer
CBF
chilling stress
Chou's 5-steps rule
chromatin interactions
classification
clustering
computational biology
computational intelligence
Convolution Neural Network (CNN)
CRISPR-Cas9
data mining
deep learning
differential genes expression
differentiation
DNA methylation
DNA N6-methyladenine
DREB
ensembles
eQTL
exercise
fine-mapping
gene co-expression network
Gene Ontology
gene-set enrichment
genome architecture
genomics
hepatocellular carcinoma
HIGD2A
high-fat diet
hypoxia
immune response
infiltration
infiltration tactics optimization algorithm
Long Short-Term Memory (LSTM)
machine learning
machine-learning
meta-analysis
methylation
microarray
miRNA
mRNA expression
murine coronavirus
n/a
obesity
pathway
pathways
potential therapeutic targets
power
prediction
proteomics
quercetin
Reactome Pathways
RNA N6-methyladenosine site
single-cell clone
systems biology
text mining
transcription factor
transcriptomics
viral infection
yeast genome
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557129603321
Gómez Vela Francisco A  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Systems Analytics and Integration of Big Omics Data
Systems Analytics and Integration of Big Omics Data
Autore Hardiman Gary
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica 1 online resource (202 p.)
Soggetto topico Medicine
Soggetto non controllato algorithm development for network integration
Alzheimer's disease
amyloid-beta
annotation
artificial intelligence
biocuration
bioinformatics pipelines
candidate genes
causal inference
cell lines
challenges
chromatin modification
class imbalance
clinical data
cognitive impairment
curse of dimensionality
data integration
database
deep phenotype
dementia
direct effect
disease variants
distance correlation
drug sensitivity
enrichment analysis
epidemiological data
epigenetics
feature selection
Gene Ontology
gene-environment interactions
genomics
genotype
heterogeneous data
indirect effect
integrative analytics
joint modeling
KEGG pathways
logic forest
machine learning
microtubule-associated protein tau
miRNA-gene expression networks
missing data
multi-omics
multiomics integration
multivariate analysis
multivariate causal mediation
n/a
network topology analysis
neurodegeneration
non-omics data
omics data
pharmacogenomics
phenomics
phenotype
plot visualization
precision medicine informatics
proteomic analysis
regulatory genomics
RNA expression
scalability
sequencing
support vector machine
systemic lupus erythematosus
tissue classification
tissue-specific expressed genes
transcriptome
ISBN 3-03928-745-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910404089603321
Hardiman Gary  
MDPI - Multidisciplinary Digital Publishing Institute, 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui