Extensions of positive definite functions : applications and their harmonic analysis / Palle Jorgensen, Steen Pedersen, Feng Tian |
Autore | Jorgensen, Palle E. T. |
Pubbl/distr/stampa | [Cham], : Springer, 2016 |
Descrizione fisica | XXVI, 231 p. : ill. ; 24 cm |
Altri autori (Persone) |
Pedersen, Steen
Tian, Feng |
Soggetto topico | 43-XX - Abstract harmonic analysis [MSC 2020] |
Soggetto non controllato |
Completely monotone functions
Gaussian processes Gelfand Triples Pontryagin-Bochner duality Positive definite functions Reproducing Kernel Hilbert spaces Spectral Theory Unbounded operator Unitary representations von Neumann’s theory of deficiency indices |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0107471 |
Jorgensen, Palle E. T.
![]() |
||
[Cham], : Springer, 2016 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Extensions of positive definite functions : applications and their harmonic analysis / Palle Jorgensen, Steen Pedersen, Feng Tian |
Autore | Jorgensen, Palle E. T. |
Pubbl/distr/stampa | [Cham], : Springer, 2016 |
Descrizione fisica | XXVI, 231 p. : ill. ; 24 cm |
Altri autori (Persone) |
Pedersen, Steen
Tian, Feng |
Soggetto topico | 43-XX - Abstract harmonic analysis [MSC 2020] |
Soggetto non controllato |
Completely monotone functions
Gaussian processes Gelfand Triples Pontryagin-Bochner duality Positive definite functions Reproducing Kernel Hilbert spaces Spectral Theory Unbounded operator Unitary representations von Neumann’s theory of deficiency indices |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00107471 |
Jorgensen, Palle E. T.
![]() |
||
[Cham], : Springer, 2016 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Stochastic partial differential equations: an introduction / Wei Liu, Michael Röckner |
Autore | Liu, Wei |
Pubbl/distr/stampa | [Cham], : Springer, 2015 |
Descrizione fisica | VI, 266 p. : ill. ; 24 cm |
Altri autori (Persone) | Röckner, Michael |
Soggetto topico |
47-XX - Operator theory [MSC 2020]
47J35 - Nonlinear evolution equations [MSC 2020] 35-XX - Partial differential equations [MSC 2020] 60J25 - Continuous-time Markov processes on general state spaces [MSC 2020] 60H05 - Stochastic integrals [MSC 2020] 60-XX - Probability theory and stochastic processes [MSC 2020] 60H10 - Stochastic ordinary differential equations [MSC 2020] 34-XX - Ordinary differential equations [MSC 2020] 60J60 - Diffusion processes [MSC 2020] 60H15 - Stochastic partial differential equations (aspects of stochastic analysis) [MSC 2020] 35Q35 - PDEs in connection with fluid mechanics [MSC 2020] 34G20 - Nonlinear differential equations in abstract spaces [MSC 2020] 34Fxx - Ordinary differential equations and systems with randomness [MSC 2020] 35K58 - Semilinear parabolic equations [MSC 2020] 35K59 - Quasilinear parabolic equations [MSC 2020] |
Soggetto non controllato |
Explosive Solutions
Gelfand Triples Generalized Coercivity Girsanov Theorem on Hilbert Invariant measures Itô-Formula Locally Monotone Coefficients Markov property Ordinary differential equations Partial differential equations Stochastic 2D and 3D Navier-Stokes Equation Stochastic Cahn-Hilliard Equations Stochastic Evolution Equations Stochastic Partial Differential Equations Stochastic Porous Media Equations Stochastic Surface Growth Models Stochastic integration in Hilbert spaces Stochastic p-Laplace Equations Variational approach Weak and strong solutions Yamada-Watanabe Theorem in Infinite Dimensions |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0113731 |
Liu, Wei
![]() |
||
[Cham], : Springer, 2015 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Stochastic partial differential equations: an introduction / Wei Liu, Michael Röckner |
Autore | Liu, Wei |
Pubbl/distr/stampa | [Cham], : Springer, 2015 |
Descrizione fisica | VI, 266 p. : ill. ; 24 cm |
Altri autori (Persone) | Röckner, Michael |
Soggetto topico |
34-XX - Ordinary differential equations [MSC 2020]
34Fxx - Ordinary differential equations and systems with randomness [MSC 2020] 34G20 - Nonlinear differential equations in abstract spaces [MSC 2020] 35-XX - Partial differential equations [MSC 2020] 35K58 - Semilinear parabolic equations [MSC 2020] 35K59 - Quasilinear parabolic equations [MSC 2020] 35Q35 - PDEs in connection with fluid mechanics [MSC 2020] 47-XX - Operator theory [MSC 2020] 47J35 - Nonlinear evolution equations [MSC 2020] 60-XX - Probability theory and stochastic processes [MSC 2020] 60H05 - Stochastic integrals [MSC 2020] 60H10 - Stochastic ordinary differential equations [MSC 2020] 60H15 - Stochastic partial differential equations (aspects of stochastic analysis) [MSC 2020] 60J25 - Continuous-time Markov processes on general state spaces [MSC 2020] 60J60 - Diffusion processes [MSC 2020] |
Soggetto non controllato |
Explosive Solutions
Gelfand Triples Generalized Coercivity Girsanov Theorem on Hilbert Invariant measures Itô-Formula Locally Monotone Coefficients Markov property Ordinary Differential Equations Partial Differential Equations Stochastic 2D and 3D Navier-Stokes Equation Stochastic Cahn-Hilliard Equations Stochastic Evolution Equations Stochastic Partial Differential Equations Stochastic Porous Media Equations Stochastic Surface Growth Models Stochastic integration in Hilbert spaces Stochastic p-Laplace Equations Variational approach Weak and strong solutions Yamada-Watanabe Theorem in Infinite Dimensions |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00113731 |
Liu, Wei
![]() |
||
[Cham], : Springer, 2015 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Unstable Systems / Lawrence Horwitz, Yosef Strauss |
Autore | Horwitz, Lawrence P. |
Pubbl/distr/stampa | Cham, : Springer, 2020 |
Descrizione fisica | x, 221 p. : ill. ; 24 cm |
Altri autori (Persone) | Strauss, Yosef |
Soggetto topico |
81Q10 - Selfadjoint operator theory in quantum theory, including spectral analysis [MSC 2020]
81Q50 - Quantum chaos [MSC 2020] 70K55 - Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics [MSC 2020] 70H14 - Stability problems for problems in Hamiltonian and Lagrangian mechanics [MSC 2020] |
Soggetto non controllato |
Cooper pairs
Dilation Gamow approach Gelfand Triples Lax-Phillips scattering Relativistic Lee-Friedrichs model Resonances in semiconductors Rigged Hilbert spaces Second Quantization Stark Effect Unstable quantum system Wigner-Weisskopf formulation |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0233757 |
Horwitz, Lawrence P.
![]() |
||
Cham, : Springer, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Unstable Systems / Lawrence Horwitz, Yosef Strauss |
Autore | Horwitz, Lawrence P. |
Pubbl/distr/stampa | Cham, : Springer, 2020 |
Descrizione fisica | x, 221 p. : ill. ; 24 cm |
Altri autori (Persone) | Strauss, Yosef |
Soggetto topico |
70H14 - Stability problems for problems in Hamiltonian and Lagrangian mechanics [MSC 2020]
70K55 - Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics [MSC 2020] 81Q10 - Selfadjoint operator theory in quantum theory, including spectral analysis [MSC 2020] 81Q50 - Quantum chaos [MSC 2020] |
Soggetto non controllato |
Cooper pairs
Dilation Gamow approach Gelfand Triples Lax-Phillips scattering Relativistic Lee-Friedrichs model Resonances in semiconductors Rigged Hilbert spaces Second Quantization Stark Effect Unstable quantum system Wigner-Weisskopf formulation |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00233757 |
Horwitz, Lawrence P.
![]() |
||
Cham, : Springer, 2020 | ||
![]() | ||
Lo trovi qui: Univ. Vanvitelli | ||
|