Euler systems / / by Karl Rubin |
Autore | Rubin Karl |
Pubbl/distr/stampa | Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 |
Descrizione fisica | 1 online resource (241 p.) |
Disciplina | 512/.74 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Algebraic number theory
p-adic numbers |
Soggetto non controllato |
Abelian extension
Abelian variety Absolute Galois group Algebraic closure Barry Mazur Big O notation Birch and Swinnerton-Dyer conjecture Cardinality Class field theory Coefficient Cohomology Complex multiplication Conjecture Corollary Cyclotomic field Dimension (vector space) Divisibility rule Eigenvalues and eigenvectors Elliptic curve Error term Euler product Euler system Exact sequence Existential quantification Field of fractions Finite set Functional equation Galois cohomology Galois group Galois module Gauss sum Global field Heegner point Ideal class group Integer Inverse limit Inverse system Karl Rubin Local field Mathematical induction Maximal ideal Modular curve Modular elliptic curve Natural number Orthogonality P-adic number Pairing Principal ideal R-factor (crystallography) Ralph Greenberg Remainder Residue field Ring of integers Scientific notation Selmer group Subgroup Tate module Taylor series Tensor product Theorem Upper and lower bounds Victor Kolyvagin |
ISBN |
0-691-05075-9
1-4008-6520-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index |
Record Nr. | UNINA-9910786510103321 |
Rubin Karl | ||
Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Euler systems / / by Karl Rubin |
Autore | Rubin Karl |
Pubbl/distr/stampa | Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 |
Descrizione fisica | 1 online resource (241 p.) |
Disciplina | 512/.74 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Algebraic number theory
p-adic numbers |
Soggetto non controllato |
Abelian extension
Abelian variety Absolute Galois group Algebraic closure Barry Mazur Big O notation Birch and Swinnerton-Dyer conjecture Cardinality Class field theory Coefficient Cohomology Complex multiplication Conjecture Corollary Cyclotomic field Dimension (vector space) Divisibility rule Eigenvalues and eigenvectors Elliptic curve Error term Euler product Euler system Exact sequence Existential quantification Field of fractions Finite set Functional equation Galois cohomology Galois group Galois module Gauss sum Global field Heegner point Ideal class group Integer Inverse limit Inverse system Karl Rubin Local field Mathematical induction Maximal ideal Modular curve Modular elliptic curve Natural number Orthogonality P-adic number Pairing Principal ideal R-factor (crystallography) Ralph Greenberg Remainder Residue field Ring of integers Scientific notation Selmer group Subgroup Tate module Taylor series Tensor product Theorem Upper and lower bounds Victor Kolyvagin |
ISBN |
0-691-05075-9
1-4008-6520-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index |
Record Nr. | UNINA-9910816804403321 |
Rubin Karl | ||
Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Profinite Groups, Arithmetic, and Geometry. (AM-67), Volume 67 / / Stephen S. Shatz |
Autore | Shatz Stephen S. |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (265 pages) |
Disciplina | 512/.2 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Homology theory
Finite groups Algebraic number theory |
Soggetto non controllato |
Abelian group
Alexander Grothendieck Algebraic closure Algebraic extension Algebraic geometry Algebraic number field Brauer group Category of abelian groups Category of sets Characterization (mathematics) Class field theory Cohomological dimension Cohomology Cokernel Commutative diagram Composition series Computation Connected component (graph theory) Coset Cup product Dedekind domain Degeneracy (mathematics) Diagram (category theory) Dimension (vector space) Diophantine geometry Discrete group Equivalence of categories Exact sequence Existential quantification Explicit formula Exponential function Family of sets Field extension Finite group Fundamental class G-module Galois cohomology Galois extension Galois group Galois module Galois theory General topology Geometry Grothendieck topology Group cohomology Group extension Group scheme Group theory Hilbert symbol Hopf algebra Ideal (ring theory) Inequality (mathematics) Injective sheaf Inner automorphism Inverse limit Kummer theory Lie algebra Linear independence Local field Mathematical induction Mathematician Mathematics Module (mathematics) Morphism Natural topology Neighbourhood (mathematics) Normal extension Normal subgroup Number theory P-adic number P-group Polynomial Pontryagin duality Power series Prime number Principal ideal Profinite group Quadratic reciprocity Quotient group Ring of integers Sheaf (mathematics) Special case Subcategory Subgroup Supernatural number Sylow theorems Tangent space Theorem Topological group Topological property Topological ring Topological space Topology Torsion group Torsion subgroup Transcendence degree Triviality (mathematics) Unique factorization domain Variable (mathematics) Vector space |
ISBN | 1-4008-8185-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- PREFACE -- CONTENTS -- CHAPTER I. PROFINITE GROUPS -- CHAPTER II. COHOMOLOGY OF PROFINITE GROUPS -- CHAPTER III. COHOMOLOGICAL DIMENSION -- CHAPTER IV. GALOIS COHOMOLOGY AND FIELD THEORY -- CHAPTER V. LOCAL CLASS FIELD THEORY -- CHAPTER VI. DUALITY -- BIBLIOGRAPHY |
Record Nr. | UNINA-9910154751103321 |
Shatz Stephen S. | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|