Etale Homotopy of Simplicial Schemes. (AM-104), Volume 104 / / Eric M. Friedlander |
Autore | Friedlander Eric M. |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (193 pages) |
Disciplina | 514/.24 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Homotopy theory
Schemes (Algebraic geometry) Homology theory |
Soggetto non controllato |
Abelian group
Adams operation Adjoint functors Alexander Grothendieck Algebraic K-theory Algebraic closure Algebraic geometry Algebraic group Algebraic number theory Algebraic structure Algebraic topology (object) Algebraic topology Algebraic variety Algebraically closed field Automorphism Base change Cap product Cartesian product Closed immersion Codimension Coefficient Cohomology Comparison theorem Complex number Complex vector bundle Connected component (graph theory) Connected space Coprime integers Corollary Covering space Derived functor Dimension (vector space) Disjoint union Embedding Existence theorem Ext functor Exterior algebra Fiber bundle Fibration Finite field Finite group Free group Functor Fundamental group Galois cohomology Galois extension Geometry Grothendieck topology Homogeneous space Homological algebra Homology (mathematics) Homomorphism Homotopy category Homotopy group Homotopy Integral domain Intersection (set theory) Inverse limit Inverse system K-theory Leray spectral sequence Lie group Local ring Mapping cylinder Natural number Natural transformation Neighbourhood (mathematics) Newton polynomial Noetherian ring Open set Opposite category Pointed set Presheaf (category theory) Reductive group Regular local ring Relative homology Residue field Riemann surface Root of unity Serre spectral sequence Shape theory (mathematics) Sheaf (mathematics) Sheaf cohomology Sheaf of spectra Simplex Simplicial set Special case Spectral sequence Surjective function Theorem Topological K-theory Topological space Topology Tubular neighborhood Vector bundle Weak equivalence (homotopy theory) Weil conjectures Weyl group Witt vector Zariski topology |
ISBN | 1-4008-8149-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- INTRODUCTION -- 1. ETALE SITE OF A SIMPLICIAL SCHEME -- 2. SHEAVES AND COHOMOLOGY -- 3. COHOMOLOGY VIA HYPERCOVERINGS -- 4. ETALE TOPOLOGICAL TYPE -- 5. HOMOTOPY INVARIANTS -- 6. WEAK EQUIVALENCES, COMPLETIONS, AND HOMOTOPY LIMITS -- 7. FINITENESS AND HOMOLOGY -- 8. COMPARISON OF HOMOTOPY TYPES -- 9. APPLICATIONS TO TOPOLOGY -- 10. COMPARISON OF GEOMETRIC AND HOMOTOPY THEORETIC FIBRES -- 11. APPLICATIONS TO GEOMETRY -- 12. APPLICATIONS TO FINITE CHE VALLEY GROUPS -- 13. FUNCTION COMPLEXES -- 14. RELATIVE COHOMOLOGY -- 15. TUBULAR NEIGHBORHOODS -- 16. GENERALIZED COHOMOLOGY -- 17. POINCARÉ DUALITY AND LOCALLY COMPACT HOMOLOGY -- REFERENCES -- INDEX -- Backmatter |
Record Nr. | UNINA-9910154744803321 |
Friedlander Eric M. | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Euler systems / / by Karl Rubin |
Autore | Rubin Karl |
Pubbl/distr/stampa | Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 |
Descrizione fisica | 1 online resource (241 p.) |
Disciplina | 512/.74 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Algebraic number theory
p-adic numbers |
Soggetto non controllato |
Abelian extension
Abelian variety Absolute Galois group Algebraic closure Barry Mazur Big O notation Birch and Swinnerton-Dyer conjecture Cardinality Class field theory Coefficient Cohomology Complex multiplication Conjecture Corollary Cyclotomic field Dimension (vector space) Divisibility rule Eigenvalues and eigenvectors Elliptic curve Error term Euler product Euler system Exact sequence Existential quantification Field of fractions Finite set Functional equation Galois cohomology Galois group Galois module Gauss sum Global field Heegner point Ideal class group Integer Inverse limit Inverse system Karl Rubin Local field Mathematical induction Maximal ideal Modular curve Modular elliptic curve Natural number Orthogonality P-adic number Pairing Principal ideal R-factor (crystallography) Ralph Greenberg Remainder Residue field Ring of integers Scientific notation Selmer group Subgroup Tate module Taylor series Tensor product Theorem Upper and lower bounds Victor Kolyvagin |
ISBN |
0-691-05075-9
1-4008-6520-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index |
Record Nr. | UNINA-9910786510103321 |
Rubin Karl | ||
Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Euler systems / / by Karl Rubin |
Autore | Rubin Karl |
Pubbl/distr/stampa | Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 |
Descrizione fisica | 1 online resource (241 p.) |
Disciplina | 512/.74 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Algebraic number theory
p-adic numbers |
Soggetto non controllato |
Abelian extension
Abelian variety Absolute Galois group Algebraic closure Barry Mazur Big O notation Birch and Swinnerton-Dyer conjecture Cardinality Class field theory Coefficient Cohomology Complex multiplication Conjecture Corollary Cyclotomic field Dimension (vector space) Divisibility rule Eigenvalues and eigenvectors Elliptic curve Error term Euler product Euler system Exact sequence Existential quantification Field of fractions Finite set Functional equation Galois cohomology Galois group Galois module Gauss sum Global field Heegner point Ideal class group Integer Inverse limit Inverse system Karl Rubin Local field Mathematical induction Maximal ideal Modular curve Modular elliptic curve Natural number Orthogonality P-adic number Pairing Principal ideal R-factor (crystallography) Ralph Greenberg Remainder Residue field Ring of integers Scientific notation Selmer group Subgroup Tate module Taylor series Tensor product Theorem Upper and lower bounds Victor Kolyvagin |
ISBN |
0-691-05075-9
1-4008-6520-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Acknowledgments / Rubin, Karl -- Introduction -- Chapter 1. Galois Cohomology of p-adic Representations -- Chapter 2. Euler Systems: Definition and Main Results -- Chapter 3. Examples and Applications -- Chapter 4. Derived Cohomology Classes -- Chapter 5. Bounding the Selmer Group -- Chapter 6. Twisting -- Chapter 7. Iwasawa Theory -- Chapter 8. Euler Systems and p-adic L-functions -- Chapter 9. Variants -- Appendix A. Linear Algebra -- Appendix B. Continuous Cohomology and Inverse Limits -- Appendix C. Cohomology of p-adic Analytic Groups -- Appendix D. p-adic Calculations in Cyclotomic Fields -- Bibliography -- Index of Symbols -- Subject Index |
Record Nr. | UNINA-9910816804403321 |
Rubin Karl | ||
Princeton, New Jersey ; ; Chichester, England : , : Princeton University Press, , 2000 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Galois Cohomology and Class Field Theory / David Harari ; Translated from the french by Andrei Yafaev |
Autore | Harari, David |
Pubbl/distr/stampa | Cham, : EDP Sciences, : Springer, 2020 |
Descrizione fisica | xiv, 338 p. : ill. ; 24 cm |
Soggetto topico |
11-XX - Number theory [MSC 2020]
11R37 - Class field theory [MSC 2020] 11R29 - Class numbers, class groups, discriminants [MSC 2020] 11S31 - Class field theory; p-adic formal groups [MSC 2020] 11R34 - Galois cohomology [MSC 2020] 11S25 - Galois cohomology [MSC 2020] 12G05 - Galois cohomology [MSC 2020] |
Soggetto non controllato |
Brauer group
Class field theory Galois cohomology Global fields Local fields Lubin-Tate formal group Poitou-Tate duality Profinite groups |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0249286 |
Harari, David | ||
Cham, : EDP Sciences, : Springer, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Galois Cohomology and Class Field Theory / David Harari ; Translated from the french by Andrei Yafaev |
Autore | Harari, David |
Pubbl/distr/stampa | Cham, : EDP Sciences, : Springer, 2020 |
Descrizione fisica | xiv, 338 p. : ill. ; 24 cm |
Soggetto topico |
11-XX - Number theory [MSC 2020]
11R29 - Class numbers, class groups, discriminants [MSC 2020] 11R34 - Galois cohomology [MSC 2020] 11R37 - Class field theory [MSC 2020] 11S25 - Galois cohomology [MSC 2020] 11S31 - Class field theory; p-adic formal groups [MSC 2020] 12G05 - Galois cohomology [MSC 2020] |
Soggetto non controllato |
Brauer group
Class field theory Galois cohomology Global fields Local fields Lubin-Tate formal group Poitou-Tate duality Profinite groups |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00249286 |
Harari, David | ||
Cham, : EDP Sciences, : Springer, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151), Volume 151 / / Richard Taylor, Michael Harris |
Autore | Harris Michael |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2001] |
Descrizione fisica | 1 online resource (288 p.) |
Disciplina | 516.3/5 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Mathematics
Shimura varieties MATHEMATICS / Number Theory |
Soggetto non controllato |
Abelian variety
Absolute value Algebraic group Algebraically closed field Artinian Automorphic form Base change Bijection Canonical map Codimension Coefficient Cohomology Compactification (mathematics) Conjecture Corollary Dimension (vector space) Dimension Direct limit Division algebra Eigenvalues and eigenvectors Elliptic curve Embedding Equivalence class Equivalence of categories Existence theorem Field of fractions Finite field Function field Functor Galois cohomology Galois group Generic point Geometry Hasse invariant Infinitesimal character Integer Inverse system Isomorphism class Lie algebra Local class field theory Maximal torus Modular curve Moduli space Monic polynomial P-adic number Prime number Profinite group Residue field Ring of integers Separable extension Sheaf (mathematics) Shimura variety Simple group Special case Spectral sequence Square root Subset Tate module Theorem Transcendence degree Unitary group Valuative criterion Variable (mathematics) Vector space Weil group Weil pairing Zariski topology |
ISBN | 1-4008-3720-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Introduction -- Acknowledgements -- Chapter I. Preliminaries -- Chapter II. Barsotti-Tate groups -- Chapter III. Some simple Shimura varieties -- Chapter IV. Igusa varieties -- Chapter V. Counting Points -- Chapter VI. Automorphic forms -- Chapter VII. Applications -- Appendix. A result on vanishing cycles / Berkovich, V. G. -- Bibliography -- Index |
Record Nr. | UNINA-9910791960703321 |
Harris Michael | ||
Princeton, NJ : , : Princeton University Press, , [2001] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151), Volume 151 / / Richard Taylor, Michael Harris |
Autore | Harris Michael |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2001] |
Descrizione fisica | 1 online resource (288 p.) |
Disciplina | 516.3/5 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Mathematics
Shimura varieties MATHEMATICS / Number Theory |
Soggetto non controllato |
Abelian variety
Absolute value Algebraic group Algebraically closed field Artinian Automorphic form Base change Bijection Canonical map Codimension Coefficient Cohomology Compactification (mathematics) Conjecture Corollary Dimension (vector space) Dimension Direct limit Division algebra Eigenvalues and eigenvectors Elliptic curve Embedding Equivalence class Equivalence of categories Existence theorem Field of fractions Finite field Function field Functor Galois cohomology Galois group Generic point Geometry Hasse invariant Infinitesimal character Integer Inverse system Isomorphism class Lie algebra Local class field theory Maximal torus Modular curve Moduli space Monic polynomial P-adic number Prime number Profinite group Residue field Ring of integers Separable extension Sheaf (mathematics) Shimura variety Simple group Special case Spectral sequence Square root Subset Tate module Theorem Transcendence degree Unitary group Valuative criterion Variable (mathematics) Vector space Weil group Weil pairing Zariski topology |
ISBN | 1-4008-3720-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Introduction -- Acknowledgements -- Chapter I. Preliminaries -- Chapter II. Barsotti-Tate groups -- Chapter III. Some simple Shimura varieties -- Chapter IV. Igusa varieties -- Chapter V. Counting Points -- Chapter VI. Automorphic forms -- Chapter VII. Applications -- Appendix. A result on vanishing cycles / Berkovich, V. G. -- Bibliography -- Index |
Record Nr. | UNINA-9910814893103321 |
Harris Michael | ||
Princeton, NJ : , : Princeton University Press, , [2001] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Groupes algébriques semi-simples en dimension cohomologique ≤2 : Semisimple algebraic groups in cohomological dimension ≤2 / Philippe Gille |
Autore | Gille, Philippe |
Pubbl/distr/stampa | Cham, : Springer, 2019 |
Descrizione fisica | xxii, 167 p. : ill. ; 24 cm |
Soggetto topico |
20G15 - Linear algebraic groups over arbitrary fields [MSC 2020]
12Gxx - Homological methods (field theory) [MSC 2020] |
Soggetto non controllato |
Algebraic groups
Exceptional groups Galois cohomology Norm groups Serre's conjecture II |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione |
eng
fre |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0125408 |
Gille, Philippe | ||
Cham, : Springer, 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Groupes algébriques semi-simples en dimension cohomologique ≤2 : Semisimple algebraic groups in cohomological dimension ≤2 / Philippe Gille |
Autore | Gille, Philippe |
Pubbl/distr/stampa | Cham, : Springer, 2019 |
Descrizione fisica | xxii, 167 p. : ill. ; 24 cm |
Soggetto topico |
12Gxx - Homological methods (field theory) [MSC 2020]
20G15 - Linear algebraic groups over arbitrary fields [MSC 2020] |
Soggetto non controllato |
Algebraic groups
Exceptional groups Galois cohomology Norm groups Serre's conjecture II |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione |
eng
fre |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00125408 |
Gille, Philippe | ||
Cham, : Springer, 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
The p-adic Simpson correspondence / / Ahmed Abbes, Michel Gros, Takeshi Tsuji |
Autore | Abbes Ahmed |
Pubbl/distr/stampa | Princeton, New Jersey : , : Princeton University Press, , 2016 |
Descrizione fisica | 1 online resource (618 p.) |
Disciplina | 512/.2 |
Collana | Annals of mathematics studies |
Soggetto topico |
Group theory
p-adic groups Geometry, Algebraic |
Soggetto non controllato |
Dolbeault generalized representation
Dolbeault module Dolbeault representation Faltings cohomology Faltings extension Faltings ringed topos Faltings site Faltings topos Galois cohomology Gerd Faltings Higgs bundle Higgs bundles Higgs crystals Higgs envelopes Higgs isocrystal HiggsДate algebra HodgeДate representation HodgeДate structure HodgeДate theory Hyodo's theory Koszul complex additive categories adic module almost faithfully flat descent almost faithfully flat module almost flat module almost isomorphism almost tale covering almost tale extension cohomology covanishing topos crystalline-type topos deformation discrete AЇ-module finite tale site fundamental group generalized covanishing topos generalized representation inverse limit linear algebra locally irreducible scheme morphism overconvergence p-adic Hodge theory p-adic Simpson correspondence p-adic field period ring ringed covanishing topos ringed total topos small generalized representation small representation solvable Higgs module tale cohomology tale fundamental group torsor |
ISBN | 1-4008-8123-4 |
Classificazione | SI 830 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front matter -- Contents -- Foreword -- Chapter I. Representations of the fundamental group and the torsor of deformations. An overview / Abbes, Ahmed / Gros, Michel -- Chapter II. Representations of the fundamental group and the torsor of deformations. Local study / Abbes, Ahmed / Gros, Michel -- Chapter III. Representations of the fundamental group and the torsor of deformations. Global aspects / Abbes, Ahmed / Gros, Michel -- Chapter IV. Cohomology of Higgs isocrystals / Tsuji, Takeshi -- Chapter V. Almost étale coverings / Tsuji, Takeshi -- Chapter VI. Covanishing topos and generalizations / Abbes, Ahmed / Gros, Michel -- Facsimile : A p-adic Simpson correspondence / Faltings, Gerd -- Bibliography -- Indexes |
Record Nr. | UNINA-9910797970703321 |
Abbes Ahmed | ||
Princeton, New Jersey : , : Princeton University Press, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|