Hölder Continuous Euler Flows in Three Dimensions with Compact Support in Time / / Philip Isett
| Hölder Continuous Euler Flows in Three Dimensions with Compact Support in Time / / Philip Isett |
| Autore | Isett Philip |
| Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2017] |
| Descrizione fisica | 1 online resource (214 pages) |
| Disciplina | 532/.05 |
| Collana | Annals of Mathematics Studies |
| Soggetto topico | Fluid dynamics - Mathematics |
| Soggetto non controllato |
Beltrami flows
Einstein summation convention Euler equations Euler flow Euler-Reynolds equations Euler-Reynolds system Galilean invariance Galilean transformation HighЈigh Interference term HighЈigh term HighЌow Interaction term Hlder norm Hlder regularity Lars Onsager Main Lemma Main Theorem Mollification term Newton's law Noether's theorem Onsager's conjecture Reynolds stres Reynolds stress Stress equation Stress term Transport equation Transport term Transport-Elliptic equation abstract index notation algebra amplitude coarse scale flow coarse scale velocity coefficient commutator estimate commutator term commutator conservation of momentum continuous solution contravariant tensor convergence convex integration correction term correction covariant tensor dimensional analysis divergence equation divergence free vector field divergence operator energy approximation energy function energy increment energy regularity energy variation energy error term error finite time interval first material derivative fluid dynamics frequencies frequency energy levels h-principle integral lifespan parameter lower indices material derivative mollification mollifier moment vanishing condition momentum multi-index non-negative function nonzero solution optimal regularity oscillatory factor oscillatory term parameters parametrix expansion parametrix phase direction phase function phase gradient pressure correction pressure regularity relative acceleration relative velocity scaling symmetry second material derivative smooth function smooth stress tensor smooth vector field spatial derivative stress tensor theorem time cutoff function time derivative transport derivative transport equations transport estimate transport upper indices vector amplitude velocity correction velocity field velocity weak limit weak solution |
| ISBN | 1-4008-8542-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- Contents -- Preface -- Part I. Introduction -- Part II. General Considerations of the Scheme -- Part III. Basic Construction of the Correction -- Part IV. Obtaining Solutions from the Construction -- Part V. Construction of Regular Weak Solutions: Preliminaries -- Part VI Construction of Regular Weak Solutions: Estimating the Correction -- Part VII. Construction of Regular Weak Solutions: Estimating the New Stress -- Acknowledgments -- Appendices -- References -- Index |
| Record Nr. | UNINA-9910163942603321 |
Isett Philip
|
||
| Princeton, NJ : , : Princeton University Press, , [2017] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Physical and Mathematical Fluid Mechanics
| Physical and Mathematical Fluid Mechanics |
| Autore | Scholle Markus |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
| Descrizione fisica | 1 online resource (144 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
advanced mathematical methods
Airy's stress function analytical and numerical methods attached-eddy vortex boundary conditions capillarity characteristic point location Clebsch variables continuum hypothesis damage mechanism deterministic and stochastic approaches discharge film flows flow partitioning theory Galilean invariance Goursat functions groundwater inrush hairpin vortex image processing incompressible and compressible flow karst collapse column kinematic waves log-law Navier-Stokes equation poroacoustics potential fields Rubin-Rosenau-Gottlieb theory shear flow solitary waves and kinks stochastic geometric mechanics stochastic Lagrangian flows stochastic variational principles streaky structures streamwise vortex the Luotuoshan coalmine variational calculus variational principles velocity viscosity wetting shock fronts |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557112403321 |
Scholle Markus
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||