top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Remote Sensing in Mangroves
Remote Sensing in Mangroves
Autore Giri Chandra
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (292 p.)
Soggetto topico Technology: general issues
Soggetto non controllato above-ground biomass
aboveground biomass
aboveground biomass estimation
accuracy assessment
ALOS PALSAR-2
ALOS-2 PALSAR-2
Can Gio biosphere reserve
cellular automata
change detection
classification
cloud computing
color
data fusion
digital earth
DSM
ecosystem
estuary
EVI
extreme gradient boosting
forest monitoring
fragmentation
GAMs
GEEMMM
Generalized Additive Models
GLAS
GLCM
google earth engine
Google Earth Engine
Great Barrier Reef
intensity analysis
JERS-1
land cover
land cover dynamics
land degradation
land use
Landsat
LiDAR
machine learning
mangrove
mangrove condition
mangrove development
mangrove forests
mangrove plantation
mangroves
Markov chain
multi-temporal analysis
Myanmar
n/a
Niger Delta Region
optical images
phenology
protected area
random forest
remote sensing
RGB
SAR
satellite earth observation
Sentinel-2
spectral-temporal metrics
time series
time series analysis
transgression
upscaling
vegetation index
Vietnam
Worldview-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557495403321
Giri Chandra  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Remote Sensing of Leaf Area Index (LAI) and Other Vegetation Parameters / Hongliang Fang, Juanma Lopez Sanchez, Francisco Javier García-Haro
Remote Sensing of Leaf Area Index (LAI) and Other Vegetation Parameters / Hongliang Fang, Juanma Lopez Sanchez, Francisco Javier García-Haro
Autore Fang Hongliang
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica 1 electronic resource (334 p.)
Soggetto non controllato artificial neural network
downscaling
simulation
3D point cloud
European beech
consistency
adaptive threshold
evaluation
photosynthesis
geographic information system
P-band PolInSAR
validation
density-based clustering
structure from motion (SfM)
EPIC
Tanzania
signal attenuation
trunk
canopy closure
REDD+
unmanned aerial vehicle (UAV)
forest
recursive feature elimination
Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR)
aboveground biomass
random forest
uncertainty
household survey
spectral information
forests biomass
root biomass
biomass
unmanned aerial vehicle
Brazilian Amazon
VIIRS
global positioning system
LAI
photochemical reflectance index (PRI)
allometric scaling and resource limitation
R690/R630
modelling aboveground biomass
leaf area index
forest degradation
spectral analyses
terrestrial laser scanning
BAAPA
leaf area index (LAI)
stem volume estimation
tomographic profiles
polarization coherence tomography (PCT)
canopy gap fraction
automated classification
HemiView
remote sensing
multisource remote sensing
Pléiades imagery
photogrammetric point cloud
farm types
terrestrial LiDAR
altitude
RapidEye
forest aboveground biomass
recovery
southern U.S. forests
NDVI
machine-learning
conifer forest
satellite
chlorophyll fluorescence (ChlF)
tree heights
phenology
point cloud
local maxima
clumping index
MODIS
digital aerial photograph
Mediterranean
hemispherical sky-oriented photo
managed temperate coniferous forests
fixed tree window size
drought
GLAS
smartphone-based method
forest above ground biomass (AGB)
forest inventory
over and understory cover
sampling design
ISBN 9783039212408
3039212400
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910367563203321
Fang Hongliang  
MDPI - Multidisciplinary Digital Publishing Institute, 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui