Integral Transformation, Operational Calculus and Their Applications |
Autore | Srivastava Hari Mohan |
Pubbl/distr/stampa | Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
Descrizione fisica | 1 electronic resource (200 p.) |
Soggetto topico |
Research & information: general
Mathematics & science |
Soggetto non controllato |
approximation operators
differences of operators Szász–Mirakyan–Baskakov operators Durrmeyer type operators Bernstein polynomials modulus of continuity starlike functions subordination q-Differential operator k-Fibonacci numbers Lorentz invariant complex measures Minkowski space spectral decomposition measure convolution measure product Feynman propagator q-difference operator Janowski function meromorphic multivalent function distortion theorem partial sum closure theorem analytic functions multivalent (or p-valent) functions differential subordination q-derivative (or q-difference) operator Dunkel type integral inequality Schur-convexity majorization theory arithmetic mean-geometric mean (AM-GM) inequality Lerch function quadruple integral contour integral logarithmic function preinvex fuzzy mappings strongly preinvex fuzzy mappings strongly invex fuzzy mappings strongly fuzzy monotonicity strongly fuzzy mixed variational-like inequalities Fourier integral theorem double integral exponential function Catalan’s constant Aprey’s constant non-separable linear canonical wavelet symplectic matrix non-separable linear canonical transform uncertainty principle Fox–Wright function generalized hypergeometric function Mittag–Leffler function |
ISBN | 3-0365-5482-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910637795103321 |
Srivastava Hari Mohan | ||
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Rigorous Time Slicing Approach to Feynman Path Integrals / Daisuke Fujiwara |
Autore | Fujiwara, Daisuke |
Pubbl/distr/stampa | Tokyo, : Springer, 2017 |
Descrizione fisica | ix, 333 p. ; 24 cm |
Soggetto topico |
81-XX - Quantum theory [MSC 2020]
81Q05 - Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics [MSC 2020] 35Q40 - PDEs in connection with quantum mechanics [MSC 2020] 00A79 (77-XX) - Physics [MSC 2020] 81S40 - Path integrals in quantum mechanics [MSC 2020] 81Q30 - Feynman integrals and graphs; applications of algebraic topology and algebraic geometry [MSC 2020] |
Soggetto non controllato |
Feynman Path Integral
Feynman propagator Fundamental solutions Partial differential equations Quantum mechanics Schrödinger equations Semiclassical techniques |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0123556 |
Fujiwara, Daisuke | ||
Tokyo, : Springer, 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Rigorous Time Slicing Approach to Feynman Path Integrals / Daisuke Fujiwara |
Autore | Fujiwara, Daisuke |
Pubbl/distr/stampa | Tokyo, : Springer, 2017 |
Descrizione fisica | ix, 333 p. ; 24 cm |
Soggetto topico |
00A79 (77-XX) - Physics [MSC 2020]
35Q40 - PDEs in connection with quantum mechanics [MSC 2020] 81-XX - Quantum theory [MSC 2020] 81Q05 - Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics [MSC 2020] 81Q30 - Feynman integrals and graphs; applications of algebraic topology and algebraic geometry [MSC 2020] 81S40 - Path integrals in quantum mechanics [MSC 2020] |
Soggetto non controllato |
Feynman Path Integral
Feynman propagator Fundamental solutions Partial differential equations Quantum mechanics Schrödinger equations Semiclassical techniques |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00123556 |
Fujiwara, Daisuke | ||
Tokyo, : Springer, 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|