A Combinatorial Perspective on Quantum Field Theory / Karen Yeats |
Autore | Yeats, Karen |
Pubbl/distr/stampa | Cham, : Springer, 2017 |
Descrizione fisica | ix, 120 p. : ill. ; 24 cm |
Soggetto topico |
81-XX - Quantum theory [MSC 2020]
05C05 - Trees [MSC 2020] 00A79 (77-XX) - Physics [MSC 2020] 81T05 - Axiomatic quantum field theory; operator algebras [MSC 2020] 81P05 - General and philosophical questions in quantum theory [MSC 2020] 83C47 - Methods of quantum field theory in general relativity and gravitational theory [MSC 2020] 16T05 - Hopf algebras and their applications [MSC 2020] 16T30 - Connections of Hopf algebras with combinatorics [MSC 2020] 81T18 - Feynman diagrams [MSC 2020] 97K20 - Combinatorics (educational aspects) [MSC 2020] |
Soggetto non controllato |
C2 invariant
Chord diagram expansion Combinatorial Hopf algebras Combinatorial classes Connes-Kreimer Hopf algebra Dyson-Schwinger equations Feynman graphs Feynman periods Graph theory Leading log expansion Rooted trees Schnetz twist Sub Hopf algebras The zigzag result |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN0181265 |
Yeats, Karen | ||
Cham, : Springer, 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
A Combinatorial Perspective on Quantum Field Theory / Karen Yeats |
Autore | Yeats, Karen |
Pubbl/distr/stampa | Cham, : Springer, 2017 |
Descrizione fisica | ix, 120 p. : ill. ; 24 cm |
Soggetto topico |
00A79 (77-XX) - Physics [MSC 2020]
05C05 - Trees [MSC 2020] 16T05 - Hopf algebras and their applications [MSC 2020] 16T30 - Connections of Hopf algebras with combinatorics [MSC 2020] 81-XX - Quantum theory [MSC 2020] 81P05 - General and philosophical questions in quantum theory [MSC 2020] 81T05 - Axiomatic quantum field theory; operator algebras [MSC 2020] 81T18 - Feynman diagrams [MSC 2020] 83C47 - Methods of quantum field theory in general relativity and gravitational theory [MSC 2020] 97K20 - Combinatorics (educational aspects) [MSC 2020] |
Soggetto non controllato |
C2 invariant
Chord diagram expansion Combinatorial Hopf algebras Combinatorial classes Connes-Kreimer Hopf algebra Dyson-Schwinger equations Feynman graphs Feynman periods Graph theory Leading log expansion Rooted trees Schnetz twist Sub Hopf algebras The zigzag result |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Titolo uniforme | |
Record Nr. | UNICAMPANIA-VAN00181265 |
Yeats, Karen | ||
Cham, : Springer, 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Kontsevich’s Deformation Quantization and Quantum Field Theory / Nima Moshayedi |
Autore | Moshayedi, Nima |
Pubbl/distr/stampa | Cham, : Springer, 2022 |
Descrizione fisica | xiii, 336 p. : ill. ; 24 cm |
Soggetto topico |
53-XX - Differential geometry [MSC 2020]
53D17 - Poisson manifolds; Poisson groupoids and algebroids [MSC 2020] 46L87 - Noncommutative differential geometry [MSC 2020] 81Q30 - Feynman integrals and graphs; applications of algebraic topology and algebraic geometry [MSC 2020] 81T75 - Noncommutative geometry methods in quantum field theory [MSC 2020] 53D55 - Deformation quantization, star products [MSC 2020] 53D42 - Symplectic field theory; contact homology [MSC 2020] 18N70 - $\infty$-operads and higher algebra [MSC 2020] |
Soggetto non controllato |
Batalin-Vilkovisky
Configuration spaces Deformation quantization Differential geometry Fedosov Quantization Feynman graphs Gauge Theory L-infinity Algebras Path Integral Quantization Poisson Sigma Model Poisson geometry Quantum Field Theory Symplectic geometry Toplogical Quantum Field Theory Weyl-Moyal Quantization |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN0260770 |
Moshayedi, Nima | ||
Cham, : Springer, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|
Kontsevich’s Deformation Quantization and Quantum Field Theory / Nima Moshayedi |
Autore | Moshayedi, Nima |
Pubbl/distr/stampa | Cham, : Springer, 2022 |
Descrizione fisica | xiii, 336 p. : ill. ; 24 cm |
Soggetto topico |
18N70 - $\infty$-operads and higher algebra [MSC 2020]
46L87 - Noncommutative differential geometry [MSC 2020] 53-XX - Differential geometry [MSC 2020] 53D17 - Poisson manifolds; Poisson groupoids and algebroids [MSC 2020] 53D42 - Symplectic field theory; contact homology [MSC 2020] 53D55 - Deformation quantization, star products [MSC 2020] 81Q30 - Feynman integrals and graphs; applications of algebraic topology and algebraic geometry [MSC 2020] 81T75 - Noncommutative geometry methods in quantum field theory [MSC 2020] |
Soggetto non controllato |
Batalin-Vilkovisky
Configuration spaces Deformation quantization Differential geometry Fedosov Quantization Feynman graphs Gauge Theory L-infinity Algebras Path Integral Quantization Poisson Sigma Model Poisson geometry Quantum Field Theory Symplectic geometry Toplogical Quantum Field Theory Weyl-Moyal Quantization |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNICAMPANIA-VAN00260770 |
Moshayedi, Nima | ||
Cham, : Springer, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Vanvitelli | ||
|