top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Computer Recognition, Image Processing and Communications, Selected Papers from CORES 2021 and IP&C 2021
Advances in Computer Recognition, Image Processing and Communications, Selected Papers from CORES 2021 and IP&C 2021
Autore Choras Michal
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2022
Descrizione fisica 1 electronic resource (268 p.)
Soggetto topico Technology: general issues
History of engineering & technology
Soggetto non controllato pointer instrumentation
image processing
object detection
K-fold cross-validation
Faster-RCNN
vein detection
digital image processing
correlation
displacement measurement
semantic segmentation
farmland vacancy segmentation
strip pooling
crop growth assessment
encoder-decoder
monotone curve
tangent circle
adjacent circle
area of location of the curve
contour
fingerprinting
malware analysis
malicious network traffic analysis
HTTP protocol analysis
pcap file analysis
malware tracking
malware identification
graph theory
smart meter
smart metering
wireless sensor network
interpolation
tangent line
curvature
error
ellipse
B-spline
dynamic dedicated path protection
generic Dijkstra algorithm
elastic optical network
modulation constraints
ECG signal
classification
PTB-XL
deep learning
computer vision
adversarial attacks
adversarial defences
image quality assessment
stitched images
panoramic images
image analysis
image entropy
NetFlow
network intrusion detection
network behavior analysis
data quality
feature selection
fronthaul
Xhaul
DSB-RFoF
A-RoF
B5G
6G
DIPP
optical channel selection
ISBN 3-0365-5314-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910619471903321
Choras Michal  
MDPI - Multidisciplinary Digital Publishing Institute, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Artificial Neural Networks in Agriculture
Artificial Neural Networks in Agriculture
Autore Kujawa Sebastian
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (283 p.)
Soggetto topico Biology, life sciences
Research & information: general
Technology, engineering, agriculture
Soggetto non controllato agroecology
apparent soil electrical conductivity (ECa)
artificial neural network
artificial neural network (ANN)
artificial neural networks
automated harvesting
average degree of coverage
big data
classification
CLQ
CNN
convolutional neural networks
corn canopy cover
corn plant density
correlation filter
coverage unevenness coefficient
crop models
crop yield prediction
cropland mapping
decision supporting systems
deep learning
deoxynivalenol
dynamic model
dynamic response
dynamic time warping
EBK
EM38
environment
Faster-RCNN
ferulic acid
food production
GA-BPNN
GPP-driven spectral model
grain
Grain weevil identification
health
high-resolution imagery
high-throughput phenotyping
hybrid feature extraction
hydroponics
image classification
image identification
LSTM
machine learning
magnetic susceptibility (MS)
Medjool dates
memory
metric
MLP network
model application for sustainable agriculture
modeling
NARX neural networks
neural image analysis
neural modelling classification
neural network
neural networks
nivalenol
oil palm tree
optimization
paddy rice mapping
Phoenix dactylifera L.
plant growth
precision agriculture
predicting
recursive feature elimination wrapper
remote sensing for agriculture
rice phenology
root zone temperature
sensitivity analysis
similarity
soil and plant nutrition
soybean
time series forecasting
transfer learning
UAV
vegetation indices
weakly supervised learning
weeds
winter wheat
yield gap
yield prediction
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557509803321
Kujawa Sebastian  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui