Artificial Neural Networks and Evolutionary Computation in Remote Sensing |
Autore | Kavzoglu Taskin |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
Descrizione fisica | 1 electronic resource (256 p.) |
Soggetto topico | Research & information: general |
Soggetto non controllato |
convolutional neural network
image segmentation multi-scale feature fusion semantic features Gaofen 6 aerial images land-use Tai’an convolutional neural networks (CNNs) feature fusion ship detection optical remote sensing images end-to-end detection transfer learning remote sensing single shot multi-box detector (SSD) You Look Only Once-v3 (YOLO-v3) Faster RCNN statistical features Gaofen-2 imagery winter wheat post-processing spatial distribution Feicheng China light detection and ranging LiDAR deep learning convolutional neural networks CNNs mask regional-convolutional neural networks mask R-CNN digital terrain analysis resource extraction hyperspectral image classification few-shot learning quadruplet loss dense network dilated convolutional network artificial neural networks classification superstructure optimization mixed-inter nonlinear programming hyperspectral images super-resolution SRGAN model generalization image downscaling mixed forest multi-label segmentation semantic segmentation unmanned aerial vehicles classification ensemble machine learning Sentinel-2 geographic information system (GIS) earth observation on-board microsat mission nanosat AI on the edge CNN |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557148403321 |
Kavzoglu Taskin
![]() |
||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
UAVs for Vegetation Monitoring |
Autore | de Castro Megías Ana |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
Descrizione fisica | 1 electronic resource (452 p.) |
Soggetto topico | Research & information: general |
Soggetto non controllato |
UAS
UAV vegetation cover multispectral land cover forest Acacia Indonesia tropics vegetation ground cover vegetation indices agro-environmental measures olive groves southern Spain sUAS water stress ornamental container-grown artificial intelligence machine learning deep learning neural network visual recognition precision agriculture canopy cover image analysis crop mapping evapotranspiration (ET) GRAPEX remote sensing Two Source Energy Balance model (TSEB) contextual spatial domain/resolution data aggregation eddy covariance (EC) Fusarium wilt crop disease banana multispectral remote sensing purple rapeseed leaves unmanned aerial vehicle U-Net plant segmentation nitrogen stress Glycine max RGB canopy height close remote sensing growth model curve fitting NDVI solar zenith angle flight altitude time of day operating parameters CNN Faster RCNN SSD Inception v2 patch-based CNN MobileNet v2 detection performance inference time disease detection cotton root rot plant-level single-plant plant-by-plant classification UAV remote sensing crop monitoring RGB imagery multispectral imagery century-old biochar semantic segmentation random forest crop canopy multispectral image chlorophyll content remote sensing technique individual plant segmentation plant detection transfer learning maize tassel tassel branch number convolution neural network VGG16 plant nitrogen estimation vegetation index image segmentation transpiration method comparison oil palm multiple linear regression support vector machine artificial neural network UAV hyperspectral wheat yellow rust disease monitoring texture spatial resolution RGB camera thermal camera drought tolerance forage grass HSV CIELab broad-sense heritability phenotyping gap high throughput field phenotyping UAV digital images winter wheat biomass multiscale textures red-edge spectra least squares support vector machine variable importance drone hyperspectral thermal nutrient deficiency weed detection disease diagnosis plant trails |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557661103321 |
de Castro Megías Ana
![]() |
||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|