top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Neural Networks and Evolutionary Computation in Remote Sensing
Artificial Neural Networks and Evolutionary Computation in Remote Sensing
Autore Kavzoglu Taskin
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (256 p.)
Soggetto topico Research & information: general
Soggetto non controllato convolutional neural network
image segmentation
multi-scale feature fusion
semantic features
Gaofen 6
aerial images
land-use
Tai’an
convolutional neural networks (CNNs)
feature fusion
ship detection
optical remote sensing images
end-to-end detection
transfer learning
remote sensing
single shot multi-box detector (SSD)
You Look Only Once-v3 (YOLO-v3)
Faster RCNN
statistical features
Gaofen-2 imagery
winter wheat
post-processing
spatial distribution
Feicheng
China
light detection and ranging
LiDAR
deep learning
convolutional neural networks
CNNs
mask regional-convolutional neural networks
mask R-CNN
digital terrain analysis
resource extraction
hyperspectral image classification
few-shot learning
quadruplet loss
dense network
dilated convolutional network
artificial neural networks
classification
superstructure optimization
mixed-inter nonlinear programming
hyperspectral images
super-resolution
SRGAN
model generalization
image downscaling
mixed forest
multi-label segmentation
semantic segmentation
unmanned aerial vehicles
classification ensemble
machine learning
Sentinel-2
geographic information system (GIS)
earth observation
on-board
microsat
mission
nanosat
AI on the edge
CNN
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557148403321
Kavzoglu Taskin  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
UAVs for Vegetation Monitoring
UAVs for Vegetation Monitoring
Autore de Castro Megías Ana
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 electronic resource (452 p.)
Soggetto topico Research & information: general
Soggetto non controllato UAS
UAV
vegetation cover
multispectral
land cover
forest
Acacia
Indonesia
tropics
vegetation ground cover
vegetation indices
agro-environmental measures
olive groves
southern Spain
sUAS
water stress
ornamental
container-grown
artificial intelligence
machine learning
deep learning
neural network
visual recognition
precision agriculture
canopy cover
image analysis
crop mapping
evapotranspiration (ET)
GRAPEX
remote sensing
Two Source Energy Balance model (TSEB)
contextual spatial domain/resolution
data aggregation
eddy covariance (EC)
Fusarium wilt
crop disease
banana
multispectral remote sensing
purple rapeseed leaves
unmanned aerial vehicle
U-Net
plant segmentation
nitrogen stress
Glycine max
RGB
canopy height
close remote sensing
growth model
curve fitting
NDVI
solar zenith angle
flight altitude
time of day
operating parameters
CNN
Faster RCNN
SSD
Inception v2
patch-based CNN
MobileNet v2
detection performance
inference time
disease detection
cotton root rot
plant-level
single-plant
plant-by-plant
classification
UAV remote sensing
crop monitoring
RGB imagery
multispectral imagery
century-old biochar
semantic segmentation
random forest
crop canopy
multispectral image
chlorophyll content
remote sensing technique
individual plant segmentation
plant detection
transfer learning
maize tassel
tassel branch number
convolution neural network
VGG16
plant nitrogen estimation
vegetation index
image segmentation
transpiration
method comparison
oil palm
multiple linear regression
support vector machine
artificial neural network
UAV hyperspectral
wheat yellow rust
disease monitoring
texture
spatial resolution
RGB camera
thermal camera
drought tolerance
forage grass
HSV
CIELab
broad-sense heritability
phenotyping gap
high throughput field phenotyping
UAV digital images
winter wheat biomass
multiscale textures
red-edge spectra
least squares support vector machine
variable importance
drone
hyperspectral
thermal
nutrient deficiency
weed detection
disease diagnosis
plant trails
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557661103321
de Castro Megías Ana  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui