top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Biomolecular Data Science-in Honor of Professor Philip E. Bourne
Biomolecular Data Science-in Honor of Professor Philip E. Bourne
Pubbl/distr/stampa MDPI - Multidisciplinary Digital Publishing Institute, 2023
Descrizione fisica 1 online resource (232 p.)
Soggetto topico Biology, life sciences
Research & information: general
Soggetto non controllato amino acids
and graph neural network
APOBEC
basal cells
binding energy
bioinformatics
biological macromolecules
carbohydrates
cell-type composition
census tract
ciliated cells
CRISPR/Cas9
cryogenic electron microscopy
cryogenic electron tomography
data science
deep learning
DNA
DNA sequencing
drug discovery
drug repositioning
drugs of abuse
electron crystallography
electronic health records
entropy
FAIR
function annotation
functional families
genome editing
goblet cells
graph neural network
immune response to smoking
kernel classifiers
kernel method
KinBase classification
KinFams
large language models
ligand binding sites
lung cancers
machine learning
macromolecular crystallography
metagenomics
micro-electron diffraction
MSA
mutational signatures
n/a
nuclear magnetic resonance spectroscopy
nucleic acids
off-targets
Open Access
pharmacovigilance
Philip Bourne
prioritization algorithm
Protein Data Bank
protein database
protein kinases
proteins
quantum machine learning
quantum metric learning
reaction template
read classification
real-world evidence
recurrent neural network
retrosynthesis
RNA
search tool
SHAP values
small-molecule ligands
smoking
social determinants of health
social media
specificity annotation
structural bioinformatics
structure-based drug discovery
variability
Worldwide Protein Data Bank
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911053031203321
MDPI - Multidisciplinary Digital Publishing Institute, 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
How to be FAIR with your data : A teaching and training handbook for higher education institutions
How to be FAIR with your data : A teaching and training handbook for higher education institutions
Autore Engelhardt Claudia
Pubbl/distr/stampa Universitätsverlag Göttingen, 2022
Descrizione fisica 1 online resource
Soggetto topico Reference, information & interdisciplinary subjects
Soggetto non controllato FAIR
handbook
open access
scientific data management
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910569194103321
Engelhardt Claudia  
Universitätsverlag Göttingen, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui