Geometry of the Unit Sphere in Polynomial Spaces / Jesús Ferrer ... [et al.]
| Geometry of the Unit Sphere in Polynomial Spaces / Jesús Ferrer ... [et al.] |
| Pubbl/distr/stampa | Cham, : Springer, 2022 |
| Descrizione fisica | vi, 137 p. : ill. ; 24 cm |
| Soggetto topico |
46-XX - Functional analysis [MSC 2020]
46B20 - Geometry and structure of normed linear spaces [MSC 2020] 46G25 - (Spaces of) multilinear mappings, polynomials [MSC 2020] |
| Soggetto non controllato |
Banach space geometry
Banach space of polynomials Bernstein and Markov inequalities Bohnenblust-Hille inequality Extreme points Polarization constant Polynomial norm Unconditional constant |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNICAMPANIA-VAN00277575 |
| Cham, : Springer, 2022 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
The Dual of L∞(X,L,λ), Finitely Additive Measures and Weak Convergence : A Primer / John Toland
| The Dual of L∞(X,L,λ), Finitely Additive Measures and Weak Convergence : A Primer / John Toland |
| Autore | Toland, John |
| Pubbl/distr/stampa | Cham, : Birkhäuser, : Springer, 2020 |
| Descrizione fisica | x, 99 p. : ill. ; 24 cm |
| Soggetto topico |
28A25 - Integration with respect to measures and other set functions [MSC 2020]
28C15 - Set functions and measures on topological spaces (regularity of measures, etc.) [MSC 2020] 26A39 - Denjoy and Perron integrals, other special integrals [MSC 2020] 46B04 - Isometric theory of Banach spaces [MSC 2020] 46Txx - Nonlinear functional analysis [MSC 2020] 46E30 - Spaces of measurable functions (Lp-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc) [MSC 2020] |
| Soggetto non controllato |
Essential range
Extreme points Finitely additive measures Riesz Representation Weak convergence Yosida-Hewitt |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0249913 |
Toland, John
|
||
| Cham, : Birkhäuser, : Springer, 2020 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
The Dual of L∞(X,L,λ), Finitely Additive Measures and Weak Convergence : A Primer / John Toland
| The Dual of L∞(X,L,λ), Finitely Additive Measures and Weak Convergence : A Primer / John Toland |
| Autore | Toland, John |
| Pubbl/distr/stampa | Cham, : Birkhäuser, : Springer, 2020 |
| Descrizione fisica | x, 99 p. : ill. ; 24 cm |
| Soggetto topico |
26A39 - Denjoy and Perron integrals, other special integrals [MSC 2020]
28A25 - Integration with respect to measures and other set functions [MSC 2020] 28C15 - Set functions and measures on topological spaces (regularity of measures, etc.) [MSC 2020] 46B04 - Isometric theory of Banach spaces [MSC 2020] 46E30 - Spaces of measurable functions (Lp-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc) [MSC 2020] 46Txx - Nonlinear functional analysis [MSC 2020] |
| Soggetto non controllato |
Essential range
Extreme points Finitely additive measures Riesz Representation Weak convergence Yosida-Hewitt |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00249913 |
Toland, John
|
||
| Cham, : Birkhäuser, : Springer, 2020 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||